tidying script to run from cmd and via ssh
This commit is contained in:
parent
0a84a4b4dc
commit
b6f0308e42
4 changed files with 271 additions and 76 deletions
|
@ -6,17 +6,7 @@
|
|||
# autosklearn --> pipleine --> components --> classification
|
||||
# https://github.com/automl/auto-sklearn/tree/master/autosklearn/pipeline/components/classification
|
||||
|
||||
# TOADD:
|
||||
# LDA
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/lda.py
|
||||
# Multinomial_nb
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/multinomial_nb.py
|
||||
# passive_aggressive
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/passive_aggressive.py
|
||||
# SGD
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/sgd.py
|
||||
|
||||
|
||||
# ADDED 27/05/2022: Extra Tree + LRCV and RCCV
|
||||
######https://scikit-learn.org/stable/supervised_learning.html
|
||||
|
||||
########################################################################
|
||||
|
@ -57,7 +47,7 @@ param_grid_abc = [
|
|||
#https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/extra_trees.py
|
||||
#https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
|
||||
#======================
|
||||
estimator = ExtraTreesClassifier**rs)
|
||||
estimator = ExtraTreesClassifier(**rs)
|
||||
|
||||
# Define pipleline with steps
|
||||
pipe_abc = Pipeline([
|
||||
|
@ -85,6 +75,40 @@ param_grid_abc = [
|
|||
}
|
||||
]
|
||||
|
||||
|
||||
#======================
|
||||
# Extra TreeClassifier()
|
||||
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html
|
||||
#======================
|
||||
estimator = ExtraTreeClassifier(**rs)
|
||||
|
||||
# Define pipleline with steps
|
||||
pipe_abc = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
, ('fs', RFECV(DecisionTreeClassifier(**rs), cv = cv, scoring = 'matthews_corrcoef'))
|
||||
# , ('fs', RFECV(estimator, cv = cv, scoring = 'matthews_corrcoef'))
|
||||
# , ('clf', ExtraTreesClassifier(**rs))])
|
||||
, ('clf', estimator)
|
||||
])
|
||||
|
||||
# Define hyperparmeter space to search for
|
||||
param_grid_abc = [
|
||||
{
|
||||
'fs__min_features_to_select' : [1,2]
|
||||
# , 'fs__cv': [cv]
|
||||
},
|
||||
|
||||
# 'clf': [ExtraTreeClassifier(**rs)],
|
||||
'clf__max_depth': [None],
|
||||
'clf__criterion': ['gini', 'entropy'],
|
||||
'clf__max_features': [None, 'sqrt', 'log2', 0.5, 1],
|
||||
'clf__min_samples_leaf': [1, 5, 10, 15, 20],
|
||||
'clf__min_samples_split': [2, 5, 10, 15, 20]
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
#===========================
|
||||
# DecisionTreeClassifier()
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/decision_tree.py
|
||||
|
@ -304,8 +328,8 @@ param_grid_gbc = [
|
|||
#########################################################################
|
||||
#===========================
|
||||
# GaussianNB()
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/gaussian_nb.py
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
|
||||
#https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/gaussian_nb.py
|
||||
#https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
|
||||
#===========================
|
||||
# Define estimator
|
||||
estimator = GaussianNB()
|
||||
|
@ -439,12 +463,58 @@ param_grid_lr = [
|
|||
'clf__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
#########################################################################
|
||||
#===========================
|
||||
# LogisticRegressionCV () *
|
||||
# https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
|
||||
#===========================
|
||||
# Define estimator
|
||||
estimator = LogisticRegressionCV(cv = 10, **rs)
|
||||
|
||||
# Define pipleline with steps
|
||||
pipe_lr = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
, ('fs', RFECV(LogisticRegression(**rs), cv = rskf_cv, scoring = 'matthews_corrcoef'))
|
||||
# , ('fs', RFECV(estimator, cv = cv, scoring = 'matthews_corrcoef'))
|
||||
, ('clf', estimator)])
|
||||
|
||||
# Define hyperparmeter space to search for
|
||||
param_grid_lr = [
|
||||
|
||||
{'fs__min_features_to_select' : [1,2]
|
||||
# , 'fs__cv': [rskf_cv]
|
||||
},
|
||||
|
||||
{
|
||||
# 'clf': [LogisticRegressionCV(cv = 10, **rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'clf__max_iter': list(range(100,800,100)),
|
||||
'clf__solver': ['saga']
|
||||
},
|
||||
{
|
||||
# 'clf': [LogisticRegressionCV(cv = 10, **rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l2', 'none'],
|
||||
'clf__max_iter': list(range(100,800,100)),
|
||||
'clf__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
},
|
||||
{
|
||||
# 'clf': [LogisticRegressionCV(cv = 10, **rs)],
|
||||
'clf__C': np.logspace(0, 4, 10),
|
||||
'clf__penalty': ['l1', 'l2'],
|
||||
'clf__max_iter': list(range(100,800,100)),
|
||||
'clf__solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
#########################################################################
|
||||
#==================
|
||||
# MLPClassifier()
|
||||
https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/mlp.py
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
|
||||
#https://github.com/automl/auto-sklearn/blob/master/autosklearn/pipeline/components/classification/mlp.py
|
||||
#https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
|
||||
#==================
|
||||
# Define estimator
|
||||
estimator = MLPClassifier(**rs)
|
||||
|
@ -531,6 +601,35 @@ param_grid_rc = [
|
|||
'clf__alpha': [0.1, 0.2, 0.5, 0.8, 1.0]
|
||||
}
|
||||
]
|
||||
|
||||
#######################################################################
|
||||
#====================
|
||||
# RidgeClassifier() *
|
||||
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html
|
||||
#====================
|
||||
|
||||
# Define estimator
|
||||
estimator = RidgeClassifierCV(cv = 10, **rs)
|
||||
|
||||
# Define pipleline with steps
|
||||
pipe_rc = Pipeline([
|
||||
('pre', MinMaxScaler())
|
||||
, ('fs', RFECV(DecisionTreeClassifier(**rs), cv = cv, scoring = 'matthews_corrcoef'))
|
||||
# , ('fs', RFECV(estimator, cv = cv, scoring = 'matthews_corrcoef'))
|
||||
, ('clf', estimator)
|
||||
])
|
||||
|
||||
param_grid_rc = [
|
||||
{
|
||||
'fs__min_features_to_select' : [1,2]
|
||||
# , 'fs__cv': [cv]
|
||||
},
|
||||
|
||||
{
|
||||
#'clf' : [RidgeClassifierCV(cv = 10, **rs)],
|
||||
'clf__alpha': [0.1, 0.2, 0.5, 0.8, 1.0]
|
||||
}
|
||||
]
|
||||
#######################################################################
|
||||
#========
|
||||
# SVC()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue