huge progress with getting feature names out from One Hot encoder

This commit is contained in:
Tanushree Tunstall 2022-05-24 07:48:00 +01:00
parent 95852fa40e
commit b49c877f49

View file

@ -13,6 +13,8 @@ categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
categorical_ix categorical_ix
# Determine preprocessing steps ~ var_type # Determine preprocessing steps ~ var_type
var_type = 'mixed'
if var_type == 'numerical': if var_type == 'numerical':
t = [('num', MinMaxScaler(), numerical_ix)] t = [('num', MinMaxScaler(), numerical_ix)]
@ -23,47 +25,52 @@ if var_type == 'mixed':
t = [('cat', OneHotEncoder(), categorical_ix) t = [('cat', OneHotEncoder(), categorical_ix)
, ('num', MinMaxScaler(), numerical_ix)] , ('num', MinMaxScaler(), numerical_ix)]
t = [('num', MinMaxScaler(), numerical_ix)
, ('cat', OneHotEncoder(), categorical_ix)]
col_transform = ColumnTransformer(transformers = t col_transform = ColumnTransformer(transformers = t
, remainder='passthrough') , remainder='passthrough')
#--------------ALEX help
# col_transform
# col_transform.fit(X)
# test = col_transform.transform(X)
# print(col_transform.get_feature_names_out())
# foo = col_transform.fit_transform(X)
# (foo == test).all()
#-----------------------
col_transform.fit(X)
col_transform.get_feature_names_out()
var_type_colnames = col_transform.get_feature_names_out()
var_type_colnames = pd.Index(var_type_colnames)
if var_type == 'mixed':
print('\nVariable type is:', var_type
, '\nNo. of columns in input_df:', len(input_df.columns)
, '\nNo. of columns post one hot encoder:', len(var_type_colnames))
else:
print('\nNo. of columns in input_df:', len(input_df.columns))
# %% begin stupid # %% begin stupid
stupid=OneHotEncoder() # stupid = OneHotEncoder()
stupid.fit(X[categorical_ix]) # stupid.fit(X[categorical_ix])
stupid_thing = stupid.get_feature_names() # stupid_thing = stupid.get_feature_names()
horrid = (list(stupid_thing) + list(numerical_ix)) # print(len(stupid_thing))
# horrid = (list(stupid_thing) + list(numerical_ix))
# print(horrid)
asdfasdf = pd.Index(horrid) # print(len(horrid))
# asdfasdf = pd.Index(horrid)
asdfasdf[gscv_fs.best_estimator_.named_steps['fs'].get_support()] # asdfasdf[gscv_fs.best_estimator_.named_steps['fs'].get_support()]
col_transform.get_param_names()['transformers']
len(stupid.get_feature_names())
len(numerical_ix)
# cat_trans = Pipeline(steps=[('onehot',OneHotEncoder(), categorical_ix)])
# num_trans = Pipeline(steps=[('num', MinMaxScaler(), numerical_ix)])
# pre_p = ColumnTransformer(transformers = [('num', num_trans, numerical_ix),
# ('cat', cat_trans, categorical_ix)
# ]
# annoying = Pipeline([('preprocessor', pre_p),('clf', LogisticRegression())])
# fukkit = GridSearchCV(annoying
# , search_space
# , cv = cv
# , scoring = mcc_score_fn
# , refit = 'mcc'
# , verbose = 1
# , return_train_score = True
# , **njobs)
# fukkit.fit(X, y)
# fukkit.best_params_
# fukkit.best_score_
# col_transform.get_param_names()['transformers']
# len(stupid.get_feature_names())
# len(numerical_ix)
# end stupid # end stupid
#%% #%%
@ -77,12 +84,11 @@ pipe = Pipeline([
#cv = rskf_cv #cv = rskf_cv
cv = skf_cv cv = skf_cv
# my data: Feature Selelction + GridSearch CV + Pipeline # LR: Feature Selelction + GridSearch CV + Pipeline
search_space = [ search_space = [
{ 'fs__estimator': [LogisticRegression(**rs)] { 'fs__estimator': [LogisticRegression(**rs)]
, 'fs__min_features_to_select': [0,1] , 'fs__min_features_to_select': [1]
,'fs__cv': [rskf_cv] ,'fs__cv': [skf_cv]
}, },
{ {
#'clf': [LogisticRegression()], #'clf': [LogisticRegression()],
@ -124,12 +130,6 @@ gscv_fs.fit(X, y)
gscv_fs.best_params_ gscv_fs.best_params_
gscv_fs.best_score_ gscv_fs.best_score_
##### CRAP
gscv_fs.get_params()['transformers']
##### END CRAP
# Training best score corresponds to the max of the mean_test<score> # Training best score corresponds to the max of the mean_test<score>
train_bscore = round(gscv_fs.best_score_, 2); train_bscore train_bscore = round(gscv_fs.best_score_, 2); train_bscore
print('\nTraining best score (MCC):', train_bscore) print('\nTraining best score (MCC):', train_bscore)
@ -182,12 +182,19 @@ gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.max()
# FS results # FS results
#============ #============
# Now get the features out # Now get the features out
all_features = gscv_fs.feature_names_in_ all_features = gscv_fs.feature_names_in_
n_all_features = gscv_fs.n_features_in_ n_all_features = gscv_fs.n_features_in_
#all_features = gsfit.feature_names_in_ #all_features = gsfit.feature_names_in_
sel_features = X.columns[gscv_fs.best_estimator_.named_steps['fs'].get_support()] #sel_features = X.columns[gscv_fs.best_estimator_.named_steps['fs'].get_support()]
#n_sf = gscv_fs.best_estimator_.named_steps['fs'].n_features_
#---------------<<<< HERE
#if var_type == 'mixed'
sel_features = var_type_colnames[gscv_fs.best_estimator_.named_steps['fs'].get_support()]
n_sf = gscv_fs.best_estimator_.named_steps['fs'].n_features_ n_sf = gscv_fs.best_estimator_.named_steps['fs'].n_features_
#---------------<<<< HERE
# get model name # get model name
model_name = gscv_fs.best_estimator_.named_steps['clf'] model_name = gscv_fs.best_estimator_.named_steps['clf']
@ -218,10 +225,9 @@ print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, bts_predict),2))
bts_mcc_score = round(matthews_corrcoef(y_bts, bts_predict),2) bts_mcc_score = round(matthews_corrcoef(y_bts, bts_predict),2)
# Diff b/w train and bts test scores # Diff b/w train and bts test scores
train_test_diff = train_bscore - bts_mcc_score train_test_diff = round(train_bscore - bts_mcc_score,2)
print('\nDiff b/w train and blind test score (MCC):', train_test_diff) print('\nDiff b/w train and blind test score (MCC):', train_test_diff)
# create a dict with all scores # create a dict with all scores
lr_btsD = {#'best_model': list(gscv_lr_fit_be_mod.items()) lr_btsD = {#'best_model': list(gscv_lr_fit_be_mod.items())
#'bts_mcc':None #'bts_mcc':None