renamed hyperparams to gscv
This commit is contained in:
parent
a82358dbb4
commit
ad5ebad7f8
31 changed files with 4433 additions and 0 deletions
118
earlier_versions/my_datap8.py
Normal file
118
earlier_versions/my_datap8.py
Normal file
|
@ -0,0 +1,118 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Mar 5 12:57:32 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
# data, etc for now comes from my_data6.py and/or my_data5.py
|
||||
|
||||
#%% try combinations
|
||||
#import sys, os
|
||||
#os.system("imports.py")
|
||||
|
||||
|
||||
#%%
|
||||
seed = 42
|
||||
features_to_encode = list(X_train.select_dtypes(include = ['object']).columns)
|
||||
|
||||
col_trans = make_column_transformer(
|
||||
(OneHotEncoder(),features_to_encode),
|
||||
remainder = "passthrough"
|
||||
)
|
||||
|
||||
rf_classifier = RandomForestClassifier(
|
||||
min_samples_leaf=50,
|
||||
n_estimators=150,
|
||||
bootstrap=True,
|
||||
oob_score=True,
|
||||
n_jobs=-1,
|
||||
random_state=seed,
|
||||
max_features='auto')
|
||||
|
||||
pipe = make_pipeline(col_trans, rf_classifier)
|
||||
pipe.fit(X_train, y_train)
|
||||
y_pred = pipe.predict(X_test)
|
||||
#%%
|
||||
|
||||
all_features_df.shape
|
||||
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(all_features_df,
|
||||
target1,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
preprocessor = ColumnTransformer(
|
||||
transformers=[
|
||||
('num', MinMaxScaler() , numerical_features_df)
|
||||
,('cat', OneHotEncoder(), categorical_features_df)])
|
||||
|
||||
seed = 42
|
||||
rf_classifier = RandomForestClassifier(
|
||||
min_samples_leaf=50,
|
||||
n_estimators=150,
|
||||
bootstrap=True,
|
||||
oob_score=True,
|
||||
n_jobs=-1,
|
||||
random_state=seed,
|
||||
max_features='auto')
|
||||
|
||||
preprocessor.fit(all_features_df)
|
||||
preprocessor.transform(all_features_df)
|
||||
|
||||
model = Pipeline(steps = [
|
||||
('preprocess', preprocessor)
|
||||
,('regression',linear_model.LogisticRegression())
|
||||
])
|
||||
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
y_pred
|
||||
|
||||
|
||||
def precision(y_true,y_pred):
|
||||
return precision_score(y_true,y_pred,pos_label = 1)
|
||||
def recall(y_true,y_pred):
|
||||
return recall_score(y_true, y_pred, pos_label = 1)
|
||||
def f1(y_true,y_pred):
|
||||
return f1_score(y_true, y_pred, pos_label = 1)
|
||||
|
||||
acc = make_scorer(accuracy_score)
|
||||
prec = make_scorer(precision)
|
||||
rec = make_scorer(recall)
|
||||
f1 = make_scorer(f1)
|
||||
|
||||
output = cross_validate(model, X_train, y_train
|
||||
, scoring = {'acc' : acc
|
||||
,'prec': prec
|
||||
,'rec' : rec
|
||||
,'f1' : f1}
|
||||
, cv = 10
|
||||
, return_train_score = False)
|
||||
pd.DataFrame(output).mean()
|
||||
#%% with feature selection
|
||||
preprocessor.fit(numerical_features_df)
|
||||
preprocessor.transform(numerical_features_df)
|
||||
|
||||
model = Pipeline(steps = [
|
||||
('preprocess', preprocessor)
|
||||
,('regression',linear_model.LogisticRegression())
|
||||
])
|
||||
|
||||
|
||||
|
||||
selector_logistic = RFECV(estimator = model
|
||||
, cv = 10
|
||||
, step = 1)
|
||||
|
||||
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df
|
||||
, target1
|
||||
, test_size = 0.33
|
||||
, random_state = 42)
|
||||
|
||||
selector_logistic_xtrain = selector_logistic.fit_transform(X_trainN, y_trainN)
|
||||
print(sel_rfe_logistic.get_support())
|
||||
X_trainN.columns
|
||||
|
||||
print(sel_rfe_logistic.ranking_)
|
Loading…
Add table
Add a link
Reference in a new issue