renamed hyperparams to gscv

This commit is contained in:
Tanushree Tunstall 2022-03-22 11:08:20 +00:00
parent a82358dbb4
commit ad5ebad7f8
31 changed files with 4433 additions and 0 deletions

View file

@ -0,0 +1,376 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 24 10:48:10 2022
@author: tanu
"""
###############################################################################
# questions:
# which data to use: merged_df3 or merged_df2
# which is the target? or_mychisq or drtype col
# scaling: can it be from -1 to 1?
# how to include the mutation information?
# 'wild_type', 'mutant', 'postion'
# whether to log transform the af and or cols
# to allow mean mode values to be imputed for validation set
# whether to calculate mean, median accounting for NA or removing them?
# strategy:
# available data = X_train
# available data but NAN = validation_test
# test data: mut generated not in mcsm
###############################################################################
import os, sys
import re
from sklearn.datasets import load_boston
from sklearn import datasets
from sklearn import linear_model
from sklearn import preprocessing
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
print(np.__version__)
print(pd.__version__)
from statistics import mean, stdev
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn.pipeline import make_pipeline
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
#%% read data
homedir = os.path.expanduser("~")
os.chdir(homedir + "/git/ML_AI_training/test_data")
# this needs to be merged_df2 or merged_df3?
my_df = pd.read_csv("pnca_all_params.csv")
my_df.dtypes
my_df_cols = my_df.columns
omit_cols1 = ['pdb_file'
, 'seq_offset4pdb'
, 'mut_3upper'
, 'wild_pos'
, 'wild_chain_pos'
, 'chain'
, 'wt_3upper'
, 'consurf_colour'
, 'consurf_colour_rev'
, 'consurf_msa_data'
, 'consurf_aa_variety'
, 'snap2_accuracy_pc'
, 'beta_logistic'
, 'se_logistic'
, 'zval_logisitc'
, 'pval_chisq'
, 'log10_or_mychisq'
, 'neglog_pval_fisher'
, 'or_fisher'
, 'wild_type'
, 'mutant_type'
, 'position'
, 'ligand_id'
, 'mutation'
, 'ss'
, 'ss_class' # include it later?
, 'contacts'
]
omit_cols2 = list(my_df.columns[my_df.columns.str.contains(".*ci_.*") | my_df.columns.str.contains(".*_scaled*") | my_df.columns.str.contains(".*_outcome*")])
# [WATCH:] just to test since these have negative values!
omit_cols3 = list(my_df.columns[my_df.columns.str.contains("electro_.*") | my_df.columns.str.contains("disulfide_.*") | my_df.columns.str.contains("hbonds_.*") | my_df.columns.str.contains("partcov_.*") | my_df.columns.str.contains("vdwclashes.*") | my_df.columns.str.contains("volumetric.*")])
omit_cols = omit_cols1 + omit_cols2 + omit_cols3
# Filter df: Filter columns to focus on my selected ones
my_df_filt = my_df.loc[:, ~my_df.columns.isin(omit_cols)]
my_df_filt_cols = my_df_filt.columns
#Fill na of filtered df: fill NaNs with column means/medians in each column
my_df_filt2 = my_df_filt.fillna(my_df_filt.mean())
my_df_filt3 = my_df_filt.fillna(my_df_filt.median())
#my_df_filt_noNA = my_df_filt.fillna(0)
summ = my_df_filt.describe()
summ2 = my_df_filt2.describe()
summ3 = my_df_filt3.describe()
#summ_noNA = my_df_filt_noNA.describe()
########################
# [WATCH]: Drop na
# Get Y
my_df2 = my_df_filt.dropna()
my_df2['resistance'] = my_df2['or_mychisq'].apply(lambda x: 0 if x <=1 else 1)
my_df2['resistance'].value_counts()
Y = my_df2['resistance']
Y = np.array(Y)
#Y = Y.reset_index()
#Y = Y.drop(['index'], axis = 1)
#Y.value_counts()
#Y = np.array(Y)
# GET X
omit_cols_y = ['or_mychisq', 'resistance']
my_df_ml = my_df2.loc[:, ~my_df2.columns.isin(omit_cols_y)]
#my_df_ml = my_df_ml.set_index('mutationinformation')
X = my_df_ml
X = X.drop(['mutationinformation'], axis = 1)
X = np.array(X)
#X = X.reset_index()
# check dim
X.shape
Y.shape
my_df2 = my_df2.reset_index()
#####################
#https://stackoverflow.com/questions/49134338/kfolds-cross-validation-vs-train-test-split
rf = RandomForestClassifier(n_estimators=100, random_state=42)
#https://towardsdatascience.com/stratified-k-fold-what-it-is-how-to-use-it-cf3d107d3ea2
# k-FOLD
print('Class Ratio:',
sum(Y)/len(Y))
print('Class Ratio:',
sum(my_df2['resistance'])/len(my_df2['resistance'])
)
skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
target = my_df2.loc[:,'resistance']
fold_no = 1
for train_index, test_index in skf.split(my_df2, target):
train = my_df2.loc[train_index,:]
test = my_df2.loc[test_index,:]
print('Fold',str(fold_no),
'Class Ratio:',
sum(test['resistance'])/len(test['resistance']))
fold_no += 1
model_logisP = Pipeline(steps = [('preprocess', preprocessing.MinMaxScaler())
, ('logis', LogisticRegression(class_weight = 'unbalanced'))
])
X_features = X_train.columns.to_list()
def train_model(train, test, fold_no):
X = X_features
y = ['resistance']
X_train = train[X]
y_train = train[y]
X_test = test[X]
y_test = test[y]
model_logisP.fit(X_train,y_train)
predictions = model_logisP.predict(X_test)
print('Fold',str(fold_no),
'Accuracy:',
accuracy_score(y_test,predictions))
fold_no = 1
for train_index, test_index in skf.split(my_df2, target):
train = my_df2.loc[train_index,:]
test = my_df2.loc[test_index,:]
train_model(train,test,fold_no)
fold_no += 1
#%%
skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=20)
lst_accu_stratified = []
scaler = preprocessing.MinMaxScaler()
X_scaled = scaler.fit_transform(X)
X_scaled = X_scaled[:,[1,2,3,15,16]]
#lr = linear_model.LogisticRegression(class_weight = 'unbalanced')
lr = linear_model.LogisticRegression()
for train_index1, test_index1 in skf.split(X, Y):
#print(train_index)
#print(test_index)
x_train_fold1, x_test_fold1 = X_scaled[train_index1], X_scaled[test_index1]
y_train_fold1, y_test_fold1 = Y[train_index1], Y[test_index1]
lr.fit(x_train_fold1, y_train_fold1)
lst_accu_stratified.append(lr.score(x_test_fold1, y_test_fold1))
# print output
print('List of possible accuracy', lst_accu_stratified)
print('Max accuracy:', max(lst_accu_stratified)*100, "%")
print('Min accuracy:', min(lst_accu_stratified)*100, "%")
print('Mean accuracy:', mean(lst_accu_stratified)*100,"%")
print('St Dev:', stdev(lst_accu_stratified)*100,"%")
# cancer data
cancer = datasets.load_breast_cancer()
x = cancer.data
y = cancer.target
skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
lst_accu_stratifiedC = []
scaler = preprocessing.MinMaxScaler()
x_scaled = scaler.fit_transform(x)
x_scaled = x_scaled[:,[1,2,3, 15, 16]]
for train_index, test_index in skf.split(x, y):
#print(train_index)
#print(test_index)
x_train_fold, x_test_fold = x_scaled[train_index], x_scaled[test_index]
y_train_fold, y_test_fold = y[train_index], y[test_index]
lr.fit(x_train_fold, y_train_fold)
lst_accu_stratifiedC.append(lr.score(x_test_fold, y_test_fold))
# print output
print('List of possible accuracy', lst_accu_stratifiedC)
print('Max accuracy:', max(lst_accu_stratifiedC)*100, "%")
print('Min accuracy:', min(lst_accu_stratifiedC)*100, "%")
print('Mean accuracy:', mean(lst_accu_stratifiedC)*100,"%")
print('St Dev:', stdev(lst_accu_stratifiedC)*100,"%")
#%%
##
# https://towardsdatascience.com/my-random-forest-classifier-cheat-sheet-in-python-fedb84f8cf4f
y_all = my_df_filt['or_mychisq'].apply(lambda x: 0 if x <=1 else 1)
X_all = my_df_filt.drop(['mutationinformation', 'or_mychisq'], axis = 1)
seed = 20 # so that the result is reproducible
X_all = my_df_filt.drop(['mutationinformation', 'or_mychisq'], axis = 1)
X_all = X_all.iloc[:,:6]
X_train, X_test, y_train, y_test = train_test_split(X_all,y_all
, test_size=0.333
, random_state = seed)
# Now, it is time to make NA a category.
# In Python, NaN is considered NAs.
# When encoded, those NaN will be ignored.
# Hence, it is useful to replace NaN with na, which is now a category called na.
# This will be taken into account when encoding later on.
#X_train = X_train.fillna('na')
#X_test = X_test.fillna('na')
X_train = X_train.fillna(X_train.median())
X_test = X_test.fillna(X_test.median())
X_train.dtypes
features_to_encode = list(X_train.select_dtypes(include = ['object']).columns)
col_trans = make_column_transformer(
(OneHotEncoder(),features_to_encode),
remainder = "passthrough"
)
rf_classifier = RandomForestClassifier(
min_samples_leaf=50,
n_estimators=150,
bootstrap=True,
oob_score=True,
n_jobs=-1,
random_state=seed,
max_features='auto')
pipe = make_pipeline(col_trans, rf_classifier)
pipe.fit(X_train, y_train)
y_pred = pipe.predict(X_test)
accuracy_score(y_test, y_pred)
print(f"The accuracy of the model is {round(accuracy_score(y_test,y_pred),3)*100} %")
recall_score(y_test, y_pred)
precision_score(y_test, y_pred)
f1_score(y_test, y_pred)
roc_auc_score (y_test, y_pred)
roc_curve(y_test, y_pred)
train_probs = pipe.predict_proba(X_train)[:,1]
probs = pipe.predict_proba(X_test)[:, 1]
train_predictions = pipe.predict(X_train)
print(f'Train ROC AUC Score: {roc_auc_score(y_train, train_probs)}')
print(f'Test ROC AUC Score: {roc_auc_score(y_test, probs)}')
def evaluate_model(y_pred, probs,train_predictions, train_probs):
baseline = {}
baseline['recall']=recall_score(y_test,
[1 for _ in range(len(y_test))])
baseline['precision'] = precision_score(y_test,
[1 for _ in range(len(y_test))])
baseline['roc'] = 0.5
results = {}
results['recall'] = recall_score(y_test, y_pred)
results['precision'] = precision_score(y_test, y_pred)
results['roc'] = roc_auc_score(y_test, probs)
train_results = {}
train_results['recall'] = recall_score(y_train,
train_predictions)
train_results['precision'] = precision_score(y_train, train_predictions)
train_results['roc'] = roc_auc_score(y_train, train_probs)
# for metric in ['recall', 'precision', 'roc']:
# print(f"Baseline: {round(baseline[metric], 2)}Test: {round(results[metric], 2)} Train: {round(train_results[metric], 2)}")
# Calculate false positive rates and true positive rates
base_fpr, base_tpr, _ = roc_curve(y_test, [1 for _ in range(len(y_test))])
model_fpr, model_tpr, _ = roc_curve(y_test, probs)
plt.figure(figsize = (8, 6))
plt.rcParams['font.size'] = 16
# Plot both curves
plt.plot(base_fpr, base_tpr, 'b', label = 'baseline')
plt.plot(model_fpr, model_tpr, 'r', label = 'model')
plt.legend(); plt.xlabel('False Positive Rate');
plt.ylabel('True Positive Rate'); plt.title('ROC Curves');
plt.show()
# Recall Baseline: 1.0 Test: 0.92 Train: 0.93
# Precision Baseline: 0.48 Test: 0.9 Train: 0.91
# Roc Baseline: 0.5 Test: 0.97 Train: 0.97
evaluate_model(y_pred,probs,train_predictions,train_probs)
#%%
import itertools
def plot_confusion_matrix(cm, classes, normalize = False,
title='Confusion matrix',
cmap=plt.cm.Greens): # can change color
plt.figure(figsize = (10, 10))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, size = 24)
plt.colorbar(aspect=4)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45, size = 14)
plt.yticks(tick_marks, classes, size = 14)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
# Label the plot
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt),
fontsize = 20,
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.grid(None)
plt.tight_layout()
plt.ylabel('True label', size = 18)
plt.xlabel('Predicted label', size = 18)
# Let's plot it out
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, classes = ['0 - Susceptible', '1 - Resistant'],
title = 'R/S Confusion Matrix')
print(rf_classifier.feature_importances_)
print(f" There are {len(rf_classifier.feature_importances_)} features in total")