moved earlier version for model and param names to earlier_versions

This commit is contained in:
Tanushree Tunstall 2022-05-24 09:21:29 +01:00
parent dcb4f7edbf
commit a4124986c0

View file

@ -0,0 +1,266 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 18 09:47:48 2022
@author: tanu
"""
#%% Useful links
# https://stackoverflow.com/questions/41844311/list-of-all-classification-algorithms
# https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
# https://github.com/davidsbatista/machine-learning-notebooks/blob/master/hyperparameter-across-models.ipynb
# https://scikit-learn.org/stable/modules/svm.html#classification
# https://machinelearningmastery.com/hyperparameters-for-classification-machine-learning-algorithms/ # [params]
# https://uk.mathworks.com/help/stats/hyperparameter-optimization-in-classification-learner-app.html [ algo]
# As a general rule of thumb, it is required to run baseline models on the dataset. I know H2O- AutoML and other AutoML packages do this. But I want to try using Scikit-learn Pipeline,
# https://codereview.stackexchange.com/questions/256934/model-pipeline-to-run-multiple-classifiers-for-ml-classification
# https://uk.mathworks.com/help/stats/hyperparameter-optimization-in-classification-learner-app.html
# QDA: https://www.geeksforgeeks.org/quadratic-discriminant-analysis/
names = [
"Nearest Neighbors",
"Linear SVM",
"RBF SVM",
"Gaussian Process",
"Decision Tree",
"Random Forest",
"Neural Net",
"AdaBoost",
"Naive Bayes",
"QDA",
]
classifiers = [
KNeighborsClassifier(5),
SVC(kernel="linear", C=0.025),
SVC(gamma=2, C=1),
GaussianProcessClassifier(1.0 * RBF(1.0)),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
MLPClassifier(alpha=1, max_iter=1000),
AdaBoostClassifier(),
GaussianNB(),
QuadraticDiscriminantAnalysis(),
]
# NOTE Logistic regression
# The choice of the algorithm depends on the penalty chosen: Supported penalties by solver:
# newton-cg - [l2, none]
# lbfgs - [l2, none]
# liblinear - [l1, l2]
# sag - [l2, none]
# saga - [elasticnet, l1, l2, none]
# SVR?
# estimator=SVR(kernel='rbf')
# param_grid={
# 'C': [1.1, 5.4, 170, 1001],
# 'epsilon': [0.0003, 0.007, 0.0109, 0.019, 0.14, 0.05, 8, 0.2, 3, 2, 7],
# 'gamma': [0.7001, 0.008, 0.001, 3.1, 1, 1.3, 5]
# }
#%% Classification algorithms param grid
#%% LogisticRegression()
#https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
gs_lr = Pipeline((
('pre' , MinMaxScaler())
,('clf', LogisticRegression(**rs
, **njobs))
))
gs_lr_params = {
'clf__C' : [0.0001, 0.001, 0.01, 0.1 ,1, 10, 100]
#'C': np.logspace(-4, 4, 50)
, 'clf__penalty': ['l1', 'l2', 'elasticnet', 'none']
, 'clf__solver' : ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
}
#%% DecisionTreeClassifier()
gs_dt = Pipeline((
('pre' , MinMaxScaler())
, ('clf', DecisionTreeClassifier(**rs
, **njobs))
))
gs_dt_params = {
'clf__max_depth': [ 2, 4, 6, 8, 10]
, 'clf__criterion':['gini','entropy']
, "clf__max_features":["auto", None]
, "clf__max_leaf_nodes":[10,20,30,40]
}
#%% KNeighborsClassifier()
#https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
gs_knn = Pipeline((
('pre' , MinMaxScaler())
,('clf', KNeighborsClassifier(**rs
, **njobs))
))
gs_knn_params = {
'clf__n_neighbors': [5, 7, 11]
#, 'clf__n_neighbors': range(1, 21, 2)
,'clf__metric' : ['euclidean', 'manhattan', 'minkowski']
, 'clf__weights' : ['uniform', 'distance']
}
#%% RandomForestClassifier()
gs_rf = Pipeline((
('pre' , MinMaxScaler())
,('clf', RandomForestClassifier(**rs
, **njobs
, bootstrap = True
, oob_score = True))
))
gs_rf_params = {
'clf__max_depth': [4, 6, 8, 10, 12, 16, 20, None]
, 'clf__class_weight':['balanced','balanced_subsample']
, 'clf__n_estimators': [10, 100, 1000]
, 'clf__criterion': ['gini', 'entropy']
, 'clf__max_features': ['auto', 'sqrt']
, 'clf__min_samples_leaf': [2, 4, 8, 50]
, 'clf__min_samples_split': [10, 20]
}
#%% XGBClassifier() # SPNT
# https://stackoverflow.com/questions/34674797/xgboost-xgbclassifier-defaults-in-python
# https://stackoverflow.com/questions/34674797/xgboost-xgbclassifier-defaults-in-python
gs_xgb = Pipeline((
('pre' , MinMaxScaler())
,('clf', XGBClassifier(**rs
, **njobs))
))
gs_xgb_params = {
'clf__learning_rate': [0.01, 0.05, 0.1, 0.2]
, 'clf__max_depth': [4, 6, 8, 10, 12, 16, 20]
, 'clf__min_samples_leaf': [4, 8, 12, 16, 20]
, 'clf__max_features': ['auto', 'sqrt']
}
#%% MLPClassifier()
# https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
gs_mlp = Pipeline((
('pre' , MinMaxScaler())
,('clf', MLPClassifier(**rs
, **njobs
, max_iter = 500))
))
gs_mlp_params = {
'clf__hidden_layer_sizes': [(1), (2), (3)]
, 'clf__max_features': ['auto', 'sqrt']
, 'clf__min_samples_leaf': [2, 4, 8]
, 'clf__min_samples_split': [10, 20]
}
#%% RidgeClassifier()
# https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
gs_rc = Pipeline((
('pre' , MinMaxScaler()) # CHECK if it wants -1 to 1
,('clf', RidgeClassifier(**rs
, **njobs))
))
gs_rc_params = {
'clf__alpha': [0.1, 0.2, 0.5, 0.8, 1.0]
}
#%% SVC()
# https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
gs_svc = Pipeline((
('pre' , MinMaxScaler()) # CHECK if it wants -1 to 1
,('clf', SVC(**rs
, **njobs))
))
gs_svc_params = {
'clf__kernel': ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'}
, 'clf__C' : [50, 10, 1.0, 0.1, 0.01]
, 'clf__gamma': ['scale', 'auto'] }
#%% BaggingClassifier()
#https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
gs_bdt = Pipeline((
('pre' , MinMaxScaler()) # CHECK if it wants -1 to 1
,('clf', BaggingClassifier(**rs
, **njobs
, bootstrap = True
, oob_score = True))
))
gs_bdt_params = {
'clf__n_estimators' : [10, 100, 1000]
# If None, then the base estimator is a DecisionTreeClassifier.
, 'clf__base_estimator' : ['None', 'SVC()', 'KNeighborsClassifier()']# if none, DT is used
, 'clf__gamma': ['scale', 'auto'] }
#%% GradientBoostingClassifier()
# https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
gs_gb = Pipeline((
('pre' , MinMaxScaler()) # CHECK if it wants -1 to 1
,('clf', GradientBoostingClassifier(**rs))
))
gs_bdt_params = {
'clf__n_estimators' : [10, 100, 200, 500, 1000]
, 'clf__n_estimators' : [10, 100, 1000]
, 'clf__learning_rate': [0.001, 0.01, 0.1]
, 'clf__subsample' : [0.5, 0.7, 1.0]
, 'clf__max_depth' : [3, 7, 9]
}
#%% AdaBoostClassifier()
#https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier
gs_gb = Pipeline((
('pre' , MinMaxScaler()) # CHECK if it wants -1 to 1
,('clf', AdaBoostClassifier(**rs))
))
gs_bdt_params = {
'clf__n_estimators': [none, 1, 2]
, 'clf__base_estiamtor' : ['None', 1*SVC(), 1*KNeighborsClassifier()]
#, 'clf___splitter' : ["best", "random"]
}
#%% GaussianProcessClassifier()
# https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html
#GaussianProcessClassifier(1.0 * RBF(1.0)),
gs_gpc = Pipeline((
('pre' , MinMaxScaler()) # CHECK if it wants -1 to 1
,('clf', GaussianProcessClassifier(**rs))
))
gs_gpc_params = {
'clf__kernel': [1*RBF(), 1*DotProduct(), 1*Matern(), 1*RationalQuadratic(), 1*WhiteKernel()]
}
#%% GaussianNB()
# https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
gs_gnb = Pipeline((
('pre' , MinMaxScaler())
, ('pca', PCA() )# CHECK if it wants -1 to 1
,('clf', GaussianNB(**rs))
))
gs_gnb_params = {
'clf__priors': [None]
, 'clf__var_smoothing': np.logspace(0,-9, num=100)
}
#%% QuadraticDiscriminantAnalysis()
#https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html
gs_qda = Pipeline((
('pre' , MinMaxScaler())
#, ('pca', PCA() )# CHECK if it wants -1 to 1
,('clf', QuadraticDiscriminantAnalysis())
))
#%% BernoulliNB()
# https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html
gs_gnb = Pipeline((
('pre' , MinMaxScaler())
,('clf', BernoulliNB())
))
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
gs_gnb_params = {
'clf__alpha': [0, 1]
, 'clf__binarize':['None', 0]
, 'clf__fit_prior': [True]
, 'clf__class_prior': ['None']
}