updated practice script with some notes
This commit is contained in:
parent
67e003df8b
commit
9d46613ca4
1 changed files with 27 additions and 9 deletions
36
my_datap1.py
36
my_datap1.py
|
@ -119,8 +119,9 @@ X_test = my_df[my_df['or_mychisq'].isnull()]
|
||||||
X_test = [23.9, 0.69, -0.16, 0.59
|
X_test = [23.9, 0.69, -0.16, 0.59
|
||||||
, 5, 0.5, 0.4, -1
|
, 5, 0.5, 0.4, -1
|
||||||
, 0.1, 1, 1, 1]
|
, 0.1, 1, 1, 1]
|
||||||
|
|
||||||
X_test_re = np.array(X_test).reshape(3, -1)
|
X_test_re = np.array(X_test).reshape(3, -1)
|
||||||
|
|
||||||
|
|
||||||
####################
|
####################
|
||||||
fitted = model.predict(X_train)
|
fitted = model.predict(X_train)
|
||||||
model.coef_
|
model.coef_
|
||||||
|
@ -134,13 +135,8 @@ scaler = preprocessing.MinMaxScaler()
|
||||||
scaler.fit(X_train)
|
scaler.fit(X_train)
|
||||||
#We can then create a scaled training set
|
#We can then create a scaled training set
|
||||||
X_train_scaled = scaler.transform(X_train)
|
X_train_scaled = scaler.transform(X_train)
|
||||||
|
|
||||||
|
|
||||||
new_scaled = scaler.transform(X_test_re)
|
new_scaled = scaler.transform(X_test_re)
|
||||||
|
|
||||||
model.predict(new_scaled)
|
model.predict(new_scaled)
|
||||||
|
|
||||||
|
|
||||||
#########
|
#########
|
||||||
from sklearn.pipeline import Pipeline
|
from sklearn.pipeline import Pipeline
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
@ -160,6 +156,20 @@ model_pipe.predict(X_test_re)
|
||||||
# resid = y_train - fitted_vals
|
# resid = y_train - fitted_vals
|
||||||
# resid
|
# resid
|
||||||
|
|
||||||
|
#=====
|
||||||
|
# Logistic 1 test
|
||||||
|
# FAILS since: the test set dim and input dim should be the same
|
||||||
|
# i.e if you give the model 10 features to train on, you will need
|
||||||
|
# 10 features to predict something?
|
||||||
|
# THINK!!!!
|
||||||
|
#=====
|
||||||
|
mod_logis = linear_model.LogisticRegression(class_weight = 'balanced')
|
||||||
|
mod_logis.fit(X_train,y_train)
|
||||||
|
X_test = [23.9]
|
||||||
|
X_test_re = np.array(X_test).reshape(1, -1)
|
||||||
|
mod_logis.predict(X_test_re)
|
||||||
|
#################
|
||||||
|
|
||||||
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
||||||
y_pred = model_pipe.predict(X_train)
|
y_pred = model_pipe.predict(X_train)
|
||||||
accuracy_score(y_train,y_pred)
|
accuracy_score(y_train,y_pred)
|
||||||
|
@ -189,6 +199,14 @@ output = cross_validate(model_pipe
|
||||||
, cv = 10, return_train_score = False)
|
, cv = 10, return_train_score = False)
|
||||||
|
|
||||||
pd.DataFrame(output).mean()
|
pd.DataFrame(output).mean()
|
||||||
0.65527950310559
|
# fit_time 0.005486
|
||||||
0.9853658536585366
|
# score_time 0.002673
|
||||||
0.6516129032258065
|
# test_acc 0.601799
|
||||||
|
# test_prec 0.976936
|
||||||
|
# test_rec 0.603226
|
||||||
|
# dtype: float64
|
||||||
|
|
||||||
|
# the three scores
|
||||||
|
# 0.65527950310559
|
||||||
|
# 0.9853658536585366
|
||||||
|
# 0.6516129032258065
|
Loading…
Add table
Add a link
Reference in a new issue