dict
This commit is contained in:
parent
d733b980ba
commit
69d0c1b557
5 changed files with 607 additions and 31 deletions
|
@ -92,15 +92,17 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
|
||||
clfs = [
|
||||
('Logistic Regression' , log_reg)
|
||||
, ('Naive Bayes' , nb)
|
||||
#, ('Naive Bayes' , nb)
|
||||
, ('K-Nearest Neighbors', knn)
|
||||
, ('SVM' , svm)
|
||||
, ('MLP' , mlp)
|
||||
, ('Decision Tree' , dt)
|
||||
, ('Extra Trees' , et)
|
||||
, ('Random Forest' , rf)
|
||||
, ('Random Forest2' , rf2)
|
||||
, ('XGBoost' , xgb)
|
||||
, ('Naive Bayes' , nb)
|
||||
|
||||
#, ('Random Forest2' , rf2)
|
||||
#, ('XGBoost' , xgb)
|
||||
]
|
||||
|
||||
skf = StratifiedKFold(n_splits = skf_splits
|
||||
|
@ -112,17 +114,20 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
Y = y_targetF
|
||||
|
||||
# Initialise score metrics list to store skf results
|
||||
fscoreL = []
|
||||
mccL = []
|
||||
presL = []
|
||||
recallL = []
|
||||
accuL = []
|
||||
roc_aucL = []
|
||||
# fscoreL = []
|
||||
# mccL = []
|
||||
# presL = []
|
||||
# recallL = []
|
||||
# accuL = []
|
||||
# roc_aucL = []
|
||||
skf_dict = {}
|
||||
|
||||
#scores_df = pd.DataFrame()
|
||||
for train_index, test_index in skf.split(input_df, y_targetF):
|
||||
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
|
||||
y_train_fold, y_test_fold = y_targetF.iloc[train_index], y_targetF.iloc[test_index]
|
||||
|
||||
#fscoreL = {}
|
||||
|
||||
# for train_index, test_index in skf.split(X_array, Y):
|
||||
# print('\nSKF train index:', train_index
|
||||
# , '\nSKF test index:', test_index)
|
||||
|
@ -139,7 +144,7 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
, ('classifier' , clf)])
|
||||
|
||||
# model_pipeline = Pipeline(steps=[('prep' , MinMaxScaler())
|
||||
# , ('classifier' , clf)])
|
||||
# , ('classifier' , clf)])
|
||||
|
||||
|
||||
model_pipeline.fit(x_train_fold, y_train_fold)
|
||||
|
@ -150,33 +155,34 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
#----------------
|
||||
# F1-Score
|
||||
fscore = f1_score(y_test_fold, y_pred_fold)
|
||||
fscoreL.append(fscore)
|
||||
fscoreM = mean(fscoreL)
|
||||
fscoreL[clf_name].append(fscore)
|
||||
print('fscoreL Len: ', len(fscoreL))
|
||||
#fscoreM = mean(fscoreL[clf])
|
||||
|
||||
# Matthews correlation coefficient
|
||||
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
||||
mccL.append(mcc)
|
||||
mccL[clf_name].append(mcc)
|
||||
mccM = mean(mccL)
|
||||
|
||||
# Precision
|
||||
pres = precision_score(y_test_fold, y_pred_fold)
|
||||
presL.append(pres)
|
||||
presM = mean(presL)
|
||||
# # Precision
|
||||
# pres = precision_score(y_test_fold, y_pred_fold)
|
||||
# presL.append(pres)
|
||||
# presM = mean(presL)
|
||||
|
||||
# Recall
|
||||
recall = recall_score(y_test_fold, y_pred_fold)
|
||||
recallL.append(recall)
|
||||
recallM = mean(recallL)
|
||||
# # Recall
|
||||
# recall = recall_score(y_test_fold, y_pred_fold)
|
||||
# recallL.append(recall)
|
||||
# recallM = mean(recallL)
|
||||
|
||||
# Accuracy
|
||||
accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
accuL.append(accu)
|
||||
accuM = mean(accuL)
|
||||
# # Accuracy
|
||||
# accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
# accuL.append(accu)
|
||||
# accuM = mean(accuL)
|
||||
|
||||
# ROC_AUC
|
||||
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
roc_aucL.append(roc_auc)
|
||||
roc_aucM = mean(roc_aucL)
|
||||
# # ROC_AUC
|
||||
# roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
# roc_aucL.append(roc_auc)
|
||||
# roc_aucM = mean(roc_aucL)
|
||||
|
||||
clf_scores_df = clf_scores_df.append({'Model' : clf_name
|
||||
,'F1_score' : fscoreM
|
||||
|
@ -186,4 +192,6 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
, 'Accuracy' : accuM
|
||||
, 'ROC_curve': roc_aucM}
|
||||
, ignore_index = True)
|
||||
return clf_scores_df
|
||||
return(clf_scores_df)
|
||||
#scores_df = scores_df.append(clf_scores_df)
|
||||
# return clf_scores_df
|
172
loopity_loop.py
Normal file
172
loopity_loop.py
Normal file
|
@ -0,0 +1,172 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Mar 4 15:25:33 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pprint as pp
|
||||
import random
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.pipeline import Pipeline
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.model_selection import StratifiedKFold
|
||||
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef
|
||||
from statistics import mean, stdev, median, mode
|
||||
#%%
|
||||
rs = {'random_state': 42}
|
||||
# Done: add preprocessing step with one hot encoder
|
||||
# TODO: supply stratified K-fold cv train and test data
|
||||
# TODO: get accuracy and other scores through K-fold cv
|
||||
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical','mixed'], skf_splits = 10):
|
||||
|
||||
'''
|
||||
@ param input_df: input features
|
||||
@ type: df (gets converted to np.array for stratified Kfold, and helps identify names to apply column transformation)
|
||||
|
||||
@param y_outputF: target (or output) feature
|
||||
@type: df or np.array
|
||||
|
||||
|
||||
returns
|
||||
multiple classification model scores
|
||||
|
||||
'''
|
||||
# Determine categorical and numerical features
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
# Determine preprocessing steps ~ var_type
|
||||
if var_type == 'numerical':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
if var_type == 'categorical':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
if var_type == 'mixed':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)
|
||||
, ('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
#%% Define classification models to run
|
||||
log_reg = LogisticRegression(**rs)
|
||||
nb = BernoulliNB()
|
||||
knn = KNeighborsClassifier()
|
||||
svm = SVC(**rs)
|
||||
mlp = MLPClassifier(max_iter = 500, **rs)
|
||||
dt = DecisionTreeClassifier(**rs)
|
||||
et = ExtraTreesClassifier(**rs)
|
||||
rf = RandomForestClassifier(**rs)
|
||||
rf2 = RandomForestClassifier(
|
||||
min_samples_leaf = 50,
|
||||
n_estimators = 150,
|
||||
bootstrap = True,
|
||||
oob_score = True,
|
||||
n_jobs = -1,
|
||||
random_state = 42,
|
||||
max_features = 'auto')
|
||||
|
||||
xgb = XGBClassifier(**rs, verbosity = 0)
|
||||
classification_metrics = {
|
||||
'F1_score': []
|
||||
,'MCC': []
|
||||
,'Precision': []
|
||||
,'Recall': []
|
||||
,'Accuracy': []
|
||||
,'ROC_curve': []
|
||||
}
|
||||
models = [
|
||||
('Logistic Regression' , log_reg)
|
||||
#, ('Naive Bayes' , nb)
|
||||
, ('K-Nearest Neighbors', knn)
|
||||
# , ('SVM' , svm)
|
||||
# , ('MLP' , mlp)
|
||||
# , ('Decision Tree' , dt)
|
||||
# , ('Extra Trees' , et)
|
||||
# , ('Random Forest' , rf)
|
||||
# , ('Naive Bayes' , nb)
|
||||
|
||||
#, ('Random Forest2' , rf2)
|
||||
#, ('XGBoost' , xgb)
|
||||
]
|
||||
|
||||
skf = StratifiedKFold(n_splits = skf_splits
|
||||
, shuffle = True
|
||||
, **rs)
|
||||
|
||||
skf_dict = {}
|
||||
fold_no = 1
|
||||
fold_dict={}
|
||||
|
||||
|
||||
for model_name, model in models:
|
||||
fold_dict.update({ model_name: {}})
|
||||
|
||||
#scores_df = pd.DataFrame()
|
||||
for train_index, test_index in skf.split(input_df, y_targetF):
|
||||
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
|
||||
y_train_fold, y_test_fold = y_targetF.iloc[train_index], y_targetF.iloc[test_index]
|
||||
#print("Fold: ", fold_no, len(train_index), len(test_index))
|
||||
|
||||
# for keys in skf_dict:
|
||||
|
||||
for model_name, model in models:
|
||||
print("start of model", model_name, " loop", fold_no)
|
||||
#skf_dict.update({model_name: classification_metrics })
|
||||
model_pipeline = Pipeline(steps=[('prep' , col_transform)
|
||||
, ('classifier' , model)])
|
||||
model_pipeline.fit(x_train_fold, y_train_fold)
|
||||
y_pred_fold = model_pipeline.predict(x_test_fold)
|
||||
|
||||
#----------------
|
||||
# Model metrics
|
||||
#----------------
|
||||
score=f1_score(y_test_fold, y_pred_fold)
|
||||
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
||||
|
||||
fold=("fold_"+str(fold_no))
|
||||
|
||||
fold_dict[model_name].update({fold: {}})
|
||||
pp.pprint(fold_dict)
|
||||
print("end of model", model_name, " loop", fold_no)
|
||||
|
||||
fold_dict[model_name][fold].update(classification_metrics)
|
||||
#fold_dict[model_name][fold]['F1_score'].append(score)
|
||||
fold_dict[model_name][fold].update({'F1_score': score})
|
||||
fold_dict[model_name][fold].update({'MCC': mcc})
|
||||
|
||||
fold_no +=1
|
||||
#pp.pprint(skf_dict)
|
||||
|
||||
return(fold_dict)
|
||||
|
||||
t3_res = MultClassPipeSKF(input_df = numerical_features_df
|
||||
, y_targetF = target1
|
||||
, var_type = 'numerical'
|
||||
, skf_splits = 10)
|
||||
#pp.pprint(t3_res)
|
||||
#print(t3_res)
|
195
my_data11.py
Normal file
195
my_data11.py
Normal file
|
@ -0,0 +1,195 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Mar 5 12:57:32 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
# Data, etc for now comes from my_data6.py and/or my_data5.py
|
||||
#%% Specify dir and import functions
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/")
|
||||
#%% Try combinations
|
||||
#import sys, os
|
||||
#os.system("imports.py")
|
||||
def precision(y_true,y_pred):
|
||||
return precision_score(y_true,y_pred,pos_label = 1)
|
||||
def recall(y_true,y_pred):
|
||||
return recall_score(y_true, y_pred, pos_label = 1)
|
||||
def f1(y_true,y_pred):
|
||||
return f1_score(y_true, y_pred, pos_label = 1)
|
||||
|
||||
#%% Check df features
|
||||
numerical_features_df.shape
|
||||
categorical_features_df.shape
|
||||
all_features_df.shape
|
||||
all_features_df.dtypes
|
||||
#%% Simple train and test data splits
|
||||
target = target1
|
||||
#target = target3
|
||||
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
X_trainC, X_testC, y_trainC, y_testC = train_test_split(categorical_features_df,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(all_features_df,
|
||||
target,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
#%% Stratified K-fold: Single model
|
||||
input_df = numerical_features_df
|
||||
#X_array = np.array(input_df)
|
||||
var_type = 'numerical'
|
||||
|
||||
input_df = all_features_df
|
||||
#X_array = np.array(input_df)
|
||||
var_type = 'mixed'
|
||||
|
||||
input_df = categorical_features_df
|
||||
#X_array = np.array(input_df)
|
||||
var_type = 'categorical'
|
||||
|
||||
y_targetF = target1
|
||||
#==============================================================================
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
# Determine preprocessing steps ~ var_type
|
||||
if var_type == 'numerical':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
if var_type == 'categorical':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
if var_type == 'mixed':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)
|
||||
, ('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
###############################################################################
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
###############################################################################
|
||||
rs = {'random_state': 42}
|
||||
del(model1)
|
||||
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('log_reg', LogisticRegression(class_weight = 'unbalanced')) ])
|
||||
|
||||
# model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
# , ('log_reg', LogisticRegression(**rs)) ])
|
||||
|
||||
del(model1)
|
||||
nb = BernoulliNB()
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('nb', nb) ])
|
||||
|
||||
del(model1)
|
||||
knn = KNeighborsClassifier()
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('knn', knn) ])
|
||||
del(model1)
|
||||
svm = SVC(**rs)
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('svm', svm) ])
|
||||
del(model1)
|
||||
mlp = MLPClassifier(max_iter = 500, **rs)
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('mlp', mlp) ])
|
||||
del(model1)
|
||||
dt = DecisionTreeClassifier(**rs)
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('dt', dt) ])
|
||||
del(model1)
|
||||
et = ExtraTreesClassifier(**rs)
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('et', et) ])
|
||||
del(model1)
|
||||
rf = RandomForestClassifier(**rs)
|
||||
model1 = Pipeline(steps = [('preprocess', MinMaxScaler())
|
||||
, ('rf', rf) ])
|
||||
###############################################################################
|
||||
#%% run
|
||||
del(mm)
|
||||
|
||||
skf = StratifiedKFold(n_splits = 10
|
||||
, shuffle = True
|
||||
, **rs)
|
||||
|
||||
#X_array = np.array(numerical_features_df)
|
||||
#Y = target1
|
||||
|
||||
model_scores_df = pd.DataFrame()
|
||||
fscoreL = []
|
||||
mccL = []
|
||||
presL = []
|
||||
recallL = []
|
||||
accuL = []
|
||||
roc_aucL = []
|
||||
|
||||
# for train_index, test_index in skf.split(X_array, Y):
|
||||
# x_train_fold, x_test_fold = X_array[train_index], X_array[test_index]
|
||||
# y_train_fold, y_test_fold = Y[train_index], Y[test_index]
|
||||
for train_index, test_index in skf.split(input_df, y_targetF):
|
||||
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
|
||||
y_train_fold, y_test_fold = y_targetF.iloc[train_index], y_targetF.iloc[test_index]
|
||||
|
||||
model1.fit(x_train_fold, y_train_fold)
|
||||
y_pred_fold = model1.predict(x_test_fold)
|
||||
|
||||
#----------------
|
||||
# Model metrics
|
||||
#----------------
|
||||
# F1-Score
|
||||
fscore = f1_score(y_test_fold, y_pred_fold)
|
||||
fscoreL.append(fscore)
|
||||
fscoreM = mean(fscoreL)
|
||||
|
||||
# Matthews correlation coefficient
|
||||
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
||||
mccL.append(mcc)
|
||||
mccM = mean(mccL)
|
||||
|
||||
# Precision
|
||||
pres = precision_score(y_test_fold, y_pred_fold)
|
||||
presL.append(pres)
|
||||
presM = mean(presL)
|
||||
|
||||
# Recall
|
||||
recall = recall_score(y_test_fold, y_pred_fold)
|
||||
recallL.append(recall)
|
||||
recallM = mean(recallL)
|
||||
|
||||
# Accuracy
|
||||
accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
accuL.append(accu)
|
||||
accuM = mean(accuL)
|
||||
|
||||
# ROC_AUC
|
||||
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
roc_aucL.append(roc_auc)
|
||||
roc_aucM = mean(roc_aucL)
|
||||
|
||||
model_scores_df = model_scores_df.append({'Model' : model1.steps[1][0]
|
||||
,'F1_score' : fscoreM
|
||||
, 'MCC' : mccM
|
||||
, 'Precision': presM
|
||||
, 'Recall' : recallM
|
||||
, 'Accuracy' : accuM
|
||||
, 'ROC_curve': roc_aucM}
|
||||
, ignore_index = True)
|
||||
print('\nModel metrics:\n', model_scores_df)
|
||||
mm = model_scores_df.mean()
|
||||
|
||||
print('\nModel metrics mean:\n', mm)
|
||||
|
||||
print('\nModel metrics:\n', model_scores_df)
|
161
skf_mm.py
Normal file
161
skf_mm.py
Normal file
|
@ -0,0 +1,161 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Mar 10 10:33:15 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% Stratified KFold: Multiple_models:
|
||||
input_df = numerical_features_df
|
||||
#X_array = np.array(input_df)
|
||||
var_type = 'numerical'
|
||||
|
||||
input_df = all_features_df
|
||||
#X_array = np.array(input_df)
|
||||
var_type = 'mixed'
|
||||
|
||||
input_df = categorical_features_df
|
||||
#X_array = np.array(input_df)
|
||||
var_type = 'categorical'
|
||||
|
||||
targetF = target1
|
||||
#==============================================================================
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
# Determine preprocessing steps ~ var_type
|
||||
if var_type == 'numerical':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
if var_type == 'categorical':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
if var_type == 'mixed':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)
|
||||
, ('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
###############################################################################
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
###############################################################################
|
||||
rs = {'random_state': 42}
|
||||
|
||||
#log_reg = LogisticRegression(**rs)
|
||||
log_reg = LogisticRegression(class_weight = 'balanced')
|
||||
nb = BernoulliNB()
|
||||
rf = RandomForestClassifier(**rs)
|
||||
|
||||
clfs = [('Logistic Regression', log_reg)
|
||||
,('Naive Bayes' , nb)
|
||||
, ('Random Forest' , rf)
|
||||
]
|
||||
|
||||
#seed_skf = 42
|
||||
skf = StratifiedKFold(n_splits = 10
|
||||
, shuffle = True
|
||||
#, random_state = seed_skf
|
||||
, **rs)
|
||||
#scores_df = pd.DataFrame()
|
||||
fscoreL = []
|
||||
mccL = []
|
||||
presL = []
|
||||
recallL = []
|
||||
accuL = []
|
||||
roc_aucL = []
|
||||
|
||||
# X_array = np.array(input_df)
|
||||
# Y = np.array(target1)
|
||||
# Y = target1
|
||||
|
||||
for train_index, test_index in skf.split(input_df, targetF):
|
||||
print('\nSKF train index:', train_index
|
||||
, '\nSKF test index:', test_index)
|
||||
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
|
||||
y_train_fold, y_test_fold = targetF.iloc[train_index], targetF.iloc[test_index]
|
||||
# for train_index, test_index in skf.split(X_array, Y):
|
||||
# print('\nSKF train index:', train_index
|
||||
# , '\nSKF test index:', test_index)
|
||||
# x_train_fold, x_test_fold = X_array[train_index], X_array[test_index]
|
||||
# y_train_fold, y_test_fold = Y[train_index], Y[test_index]
|
||||
|
||||
|
||||
clf_scores_df = pd.DataFrame()
|
||||
for clf_name, clf in clfs:
|
||||
# model2 = Pipeline(steps=[('preprocess', MinMaxScaler())
|
||||
# , ('classifier', clf)])
|
||||
model2 = Pipeline(steps=[('preprocess', col_transform)
|
||||
, ('classifier', clf)])
|
||||
|
||||
model2.fit(x_train_fold, y_train_fold)
|
||||
y_pred_fold = model2.predict(x_test_fold)
|
||||
|
||||
#----------------
|
||||
# Model metrics
|
||||
#----------------
|
||||
# F1-Score
|
||||
fscore = f1_score(y_test_fold, y_pred_fold)
|
||||
fscoreL.append(fscore)
|
||||
# print('fscoreL Len: ', len(fscoreL))
|
||||
fscoreM = mean(fscoreL)
|
||||
|
||||
# Matthews correlation coefficient
|
||||
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
||||
mccL.append(mcc)
|
||||
mccM = mean(mccL)
|
||||
|
||||
# Precision
|
||||
pres = precision_score(y_test_fold, y_pred_fold)
|
||||
presL.append(pres)
|
||||
presM = mean(presL)
|
||||
|
||||
# Recall
|
||||
recall = recall_score(y_test_fold, y_pred_fold)
|
||||
recallL.append(recall)
|
||||
recallM = mean(recallL)
|
||||
|
||||
# Accuracy
|
||||
accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
accuL.append(accu)
|
||||
accuM = mean(accuL)
|
||||
|
||||
# ROC_AUC
|
||||
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
roc_aucL.append(roc_auc)
|
||||
roc_aucM = mean(roc_aucL)
|
||||
|
||||
clf_scores_df = clf_scores_df.append({'Model': clf_name
|
||||
,'F1_score' : fscoreM
|
||||
, 'MCC' : mccM
|
||||
, 'Precision': presM
|
||||
, 'Recall' : recallM
|
||||
, 'Accuracy' : accuM
|
||||
, 'ROC_curve': roc_aucM}
|
||||
, ignore_index = True)
|
||||
#scores_df = scores_df.append(clf_scores_df)
|
||||
|
||||
|
||||
#%% Call functions
|
||||
|
||||
tN_res = MultClassPipeline(X_trainN, X_testN, y_trainN, y_testN)
|
||||
tN_res
|
||||
|
||||
t2_res = MultClassPipeline2(X_train, X_test, y_train, y_test, input_df = all_features_df)
|
||||
t2_res
|
||||
|
||||
#CHECK: numbers are awfully close to each other!
|
||||
|
||||
t3_res = MultClassPipeSKF(input_df = numerical_features_df
|
||||
, y_targetF = target1
|
||||
, var_type = 'numerical'
|
||||
, skf_splits = 10)
|
||||
t3_res
|
||||
|
||||
#CHECK: numbers are awfully close to each other!
|
||||
t4_res = MultClassPipeSKF(input_df = all_features_df
|
||||
, y_targetF = target1
|
||||
, var_type = 'mixed'
|
||||
, skf_splits = 10)
|
||||
t4_res
|
40
untitled21.py
Normal file
40
untitled21.py
Normal file
|
@ -0,0 +1,40 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Mar 10 18:06:34 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
models = [
|
||||
('Logistic Regression' , log_reg)
|
||||
, ('K-Nearest Neighbors', knn)
|
||||
]
|
||||
|
||||
classification_metrics = {
|
||||
'F1_score': []
|
||||
,'MCC': []
|
||||
,'Precision': []
|
||||
,'Recall': []
|
||||
,'Accuracy': []
|
||||
,'ROC_curve': []
|
||||
}
|
||||
|
||||
folds=[1,2]
|
||||
fold_no=1
|
||||
fold_dict={}
|
||||
for model_name, model in models:
|
||||
fold_dict.update({model_name: {}})
|
||||
|
||||
for f in folds:
|
||||
fold=("fold_"+str(fold_no))
|
||||
for model_name, model in models:
|
||||
print("start of model", model_name, "fold: ", fold)
|
||||
fold_dict[model_name].update({fold: {}})
|
||||
fold_dict[model_name][fold].update(classification_metrics)
|
||||
|
||||
print("end of model", model_name, "fold: ", fold)
|
||||
fold_dict[model_name][fold].update({'F1_score': random.randrange(1,10)})
|
||||
fold_no +=1
|
||||
pp.pprint(fold_dict)
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue