dict
This commit is contained in:
parent
d733b980ba
commit
69d0c1b557
5 changed files with 607 additions and 31 deletions
|
@ -92,15 +92,17 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
|
||||
clfs = [
|
||||
('Logistic Regression' , log_reg)
|
||||
, ('Naive Bayes' , nb)
|
||||
#, ('Naive Bayes' , nb)
|
||||
, ('K-Nearest Neighbors', knn)
|
||||
, ('SVM' , svm)
|
||||
, ('MLP' , mlp)
|
||||
, ('Decision Tree' , dt)
|
||||
, ('Extra Trees' , et)
|
||||
, ('Random Forest' , rf)
|
||||
, ('Random Forest2' , rf2)
|
||||
, ('XGBoost' , xgb)
|
||||
, ('Naive Bayes' , nb)
|
||||
|
||||
#, ('Random Forest2' , rf2)
|
||||
#, ('XGBoost' , xgb)
|
||||
]
|
||||
|
||||
skf = StratifiedKFold(n_splits = skf_splits
|
||||
|
@ -112,17 +114,20 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
Y = y_targetF
|
||||
|
||||
# Initialise score metrics list to store skf results
|
||||
fscoreL = []
|
||||
mccL = []
|
||||
presL = []
|
||||
recallL = []
|
||||
accuL = []
|
||||
roc_aucL = []
|
||||
# fscoreL = []
|
||||
# mccL = []
|
||||
# presL = []
|
||||
# recallL = []
|
||||
# accuL = []
|
||||
# roc_aucL = []
|
||||
skf_dict = {}
|
||||
|
||||
#scores_df = pd.DataFrame()
|
||||
for train_index, test_index in skf.split(input_df, y_targetF):
|
||||
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
|
||||
y_train_fold, y_test_fold = y_targetF.iloc[train_index], y_targetF.iloc[test_index]
|
||||
|
||||
#fscoreL = {}
|
||||
|
||||
# for train_index, test_index in skf.split(X_array, Y):
|
||||
# print('\nSKF train index:', train_index
|
||||
# , '\nSKF test index:', test_index)
|
||||
|
@ -139,7 +144,7 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
, ('classifier' , clf)])
|
||||
|
||||
# model_pipeline = Pipeline(steps=[('prep' , MinMaxScaler())
|
||||
# , ('classifier' , clf)])
|
||||
# , ('classifier' , clf)])
|
||||
|
||||
|
||||
model_pipeline.fit(x_train_fold, y_train_fold)
|
||||
|
@ -150,33 +155,34 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
#----------------
|
||||
# F1-Score
|
||||
fscore = f1_score(y_test_fold, y_pred_fold)
|
||||
fscoreL.append(fscore)
|
||||
fscoreM = mean(fscoreL)
|
||||
fscoreL[clf_name].append(fscore)
|
||||
print('fscoreL Len: ', len(fscoreL))
|
||||
#fscoreM = mean(fscoreL[clf])
|
||||
|
||||
# Matthews correlation coefficient
|
||||
mcc = matthews_corrcoef(y_test_fold, y_pred_fold)
|
||||
mccL.append(mcc)
|
||||
mccL[clf_name].append(mcc)
|
||||
mccM = mean(mccL)
|
||||
|
||||
# Precision
|
||||
pres = precision_score(y_test_fold, y_pred_fold)
|
||||
presL.append(pres)
|
||||
presM = mean(presL)
|
||||
# # Precision
|
||||
# pres = precision_score(y_test_fold, y_pred_fold)
|
||||
# presL.append(pres)
|
||||
# presM = mean(presL)
|
||||
|
||||
# Recall
|
||||
recall = recall_score(y_test_fold, y_pred_fold)
|
||||
recallL.append(recall)
|
||||
recallM = mean(recallL)
|
||||
# # Recall
|
||||
# recall = recall_score(y_test_fold, y_pred_fold)
|
||||
# recallL.append(recall)
|
||||
# recallM = mean(recallL)
|
||||
|
||||
# Accuracy
|
||||
accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
accuL.append(accu)
|
||||
accuM = mean(accuL)
|
||||
# # Accuracy
|
||||
# accu = accuracy_score(y_test_fold, y_pred_fold)
|
||||
# accuL.append(accu)
|
||||
# accuM = mean(accuL)
|
||||
|
||||
# ROC_AUC
|
||||
roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
roc_aucL.append(roc_auc)
|
||||
roc_aucM = mean(roc_aucL)
|
||||
# # ROC_AUC
|
||||
# roc_auc = roc_auc_score(y_test_fold, y_pred_fold)
|
||||
# roc_aucL.append(roc_auc)
|
||||
# roc_aucM = mean(roc_aucL)
|
||||
|
||||
clf_scores_df = clf_scores_df.append({'Model' : clf_name
|
||||
,'F1_score' : fscoreM
|
||||
|
@ -186,4 +192,6 @@ def MultClassPipeSKF(input_df, y_targetF, var_type = ['numerical', 'categorical'
|
|||
, 'Accuracy' : accuM
|
||||
, 'ROC_curve': roc_aucM}
|
||||
, ignore_index = True)
|
||||
return clf_scores_df
|
||||
return(clf_scores_df)
|
||||
#scores_df = scores_df.append(clf_scores_df)
|
||||
# return clf_scores_df
|
Loading…
Add table
Add a link
Reference in a new issue