tidyed up ML data processing for actual processing
This commit is contained in:
parent
cbfbb525fa
commit
693a5324c1
2 changed files with 118 additions and 90 deletions
195
UQ_ML_data.py
195
UQ_ML_data.py
|
@ -27,12 +27,11 @@ def setvars(gene,drug):
|
|||
from imblearn.under_sampling import EditedNearestNeighbours
|
||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||
|
||||
#%% REMOVE once config is set up
|
||||
#from UQ_MultModelsCl import MultModelsCl
|
||||
#%% FOR LATER: Combine ED logo data
|
||||
#%% FOR LARER: active aa site annotations
|
||||
###########################################################################
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
#%%
|
||||
homedir = os.path.expanduser("~")
|
||||
|
||||
#==============
|
||||
|
@ -70,45 +69,22 @@ def setvars(gene,drug):
|
|||
# my_df['active_aa_pos'].dtype
|
||||
|
||||
# -- CHECK script -- imports.py
|
||||
#%%============================================================================
|
||||
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
|
||||
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
|
||||
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
|
||||
or_cols = ['or_mychisq', 'log10_or_mychisq']
|
||||
|
||||
print("count of NULL values before imputation\n")
|
||||
my_df[or_cols].isnull().sum()
|
||||
|
||||
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
|
||||
|
||||
|
||||
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
|
||||
, index = my_df['mutationinformation']
|
||||
, columns = or_cols )
|
||||
my_dfI.columns = ['or_rawI', 'logorI']
|
||||
my_dfI.columns
|
||||
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
|
||||
my_dfI.head()
|
||||
|
||||
# merge with original based on index
|
||||
my_df['index_bm'] = my_df.index
|
||||
mydf_imputed = pd.merge(my_df
|
||||
, my_dfI
|
||||
, on = 'mutationinformation')
|
||||
mydf_imputed = mydf_imputed.set_index(['index_bm'])
|
||||
|
||||
my_df['log10_or_mychisq'].isna().sum()
|
||||
mydf_imputed['log10_or_mychisq'].isna().sum()
|
||||
mydf_imputed['logorI'].isna().sum()
|
||||
|
||||
len(my_df.columns)
|
||||
len(mydf_imputed.columns)
|
||||
|
||||
###########################################################################
|
||||
#%% Add lineage calculation columns
|
||||
#FIXME: Check if this can be imported from config?
|
||||
total_mtblineage_u = 8
|
||||
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
|
||||
#bar = my_df[lineage_colnames]
|
||||
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
|
||||
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_u
|
||||
###########################################################################
|
||||
#%% AA property change
|
||||
|
||||
#--------------------
|
||||
# Water prop change
|
||||
#--------------------
|
||||
my_df['water_change'] = my_df['wt_prop_water'] + str('_to_') + my_df['mut_prop_water']
|
||||
my_df['water_change'].value_counts()
|
||||
|
||||
water_prop_changeD = {
|
||||
'hydrophobic_to_neutral' : 'change'
|
||||
, 'hydrophobic_to_hydrophobic' : 'no_change'
|
||||
|
@ -123,8 +99,10 @@ def setvars(gene,drug):
|
|||
|
||||
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
|
||||
my_df['water_change'].value_counts()
|
||||
|
||||
|
||||
#--------------------
|
||||
# Polarity change
|
||||
#--------------------
|
||||
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
|
||||
my_df['polarity_change'].value_counts()
|
||||
|
||||
|
@ -148,8 +126,10 @@ def setvars(gene,drug):
|
|||
|
||||
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
|
||||
my_df['polarity_change'].value_counts()
|
||||
|
||||
|
||||
#--------------------
|
||||
# Electrostatics change
|
||||
#--------------------
|
||||
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
|
||||
my_df['electrostatics_change'].value_counts()
|
||||
|
||||
|
@ -174,8 +154,10 @@ def setvars(gene,drug):
|
|||
|
||||
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
|
||||
my_df['electrostatics_change'].value_counts()
|
||||
|
||||
# Create a combined column summarising these three cols
|
||||
|
||||
#--------------------
|
||||
# Summary change: Create a combined column summarising these three cols
|
||||
#--------------------
|
||||
detect_change = 'change'
|
||||
check_prop_cols = ['water_change', 'polarity_change', 'electrostatics_change']
|
||||
#my_df['aa_prop_change'] = (my_df.values == detect_change).any(1).astype(int)
|
||||
|
@ -188,24 +170,56 @@ def setvars(gene,drug):
|
|||
|
||||
my_df['aa_prop_change'].value_counts()
|
||||
my_df['aa_prop_change'].dtype
|
||||
#%% Add lineage calc
|
||||
total_mtblineage_u = 8
|
||||
|
||||
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
|
||||
#bar = my_df[lineage_colnames]
|
||||
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
|
||||
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_u
|
||||
|
||||
#%% Combine mmCSM_lig Data: DONE
|
||||
#%% Combine PROVEAN data: DONE
|
||||
#%% Combine ED logo data
|
||||
|
||||
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
|
||||
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
|
||||
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
|
||||
or_cols = ['or_mychisq', 'log10_or_mychisq']
|
||||
|
||||
print("count of NULL values before imputation\n")
|
||||
print(my_df[or_cols].isnull().sum())
|
||||
|
||||
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
|
||||
|
||||
|
||||
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
|
||||
, index = my_df['mutationinformation']
|
||||
, columns = or_cols )
|
||||
my_dfI.columns = ['or_rawI', 'logorI']
|
||||
my_dfI.columns
|
||||
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
|
||||
my_dfI.head()
|
||||
print("count of NULL values AFTER imputation\n")
|
||||
print(my_dfI.isnull().sum())
|
||||
|
||||
#-------------------------------------------
|
||||
# OR df Merge: with original based on index
|
||||
#-------------------------------------------
|
||||
my_df['index_bm'] = my_df.index
|
||||
mydf_imputed = pd.merge(my_df
|
||||
, my_dfI
|
||||
, on = 'mutationinformation')
|
||||
mydf_imputed = mydf_imputed.set_index(['index_bm'])
|
||||
|
||||
my_df['log10_or_mychisq'].isna().sum()
|
||||
mydf_imputed['log10_or_mychisq'].isna().sum()
|
||||
mydf_imputed['logorI'].isna().sum()
|
||||
|
||||
len(my_df.columns)
|
||||
len(mydf_imputed.columns)
|
||||
|
||||
#-----------------------------------------
|
||||
# REASSIGN my_df after imputing OR values
|
||||
#-----------------------------------------
|
||||
my_df = mydf_imputed.copy()
|
||||
|
||||
#%%########################################################################
|
||||
#==========================
|
||||
# Data for ML
|
||||
#==========================
|
||||
my_df_ml = my_df.copy()
|
||||
|
||||
#%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
|
||||
|
||||
# get logic from upstream!
|
||||
#my_df_ml = my_df.copy()
|
||||
my_df_ml = mydf_imputed.copy()
|
||||
|
||||
my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
|
||||
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||
my_df_ml.groupby(['mutationinformation'])['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||
|
@ -213,7 +227,10 @@ def setvars(gene,drug):
|
|||
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
|
||||
(my_df_ml['ligand_affinity_change'] == 0).sum()
|
||||
|
||||
#%%============================================================================
|
||||
#%%########################################################################
|
||||
#==========================
|
||||
# BLIND test set
|
||||
#==========================
|
||||
# Separate blind test set
|
||||
my_df_ml[drug].isna().sum()
|
||||
|
||||
|
@ -227,13 +244,14 @@ def setvars(gene,drug):
|
|||
training_df[drug].value_counts()
|
||||
training_df['dst_mode'].value_counts()
|
||||
|
||||
#%% Build X
|
||||
#%% Build X: input for ML
|
||||
common_cols_stabiltyN = ['ligand_distance'
|
||||
, 'ligand_affinity_change'
|
||||
, 'duet_stability_change'
|
||||
, 'ddg_foldx'
|
||||
, 'deepddg'
|
||||
, 'ddg_dynamut2']
|
||||
, 'ddg_dynamut2'
|
||||
, 'mmcsm_lig']
|
||||
|
||||
foldX_cols = ['contacts'
|
||||
, 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
||||
|
@ -250,36 +268,45 @@ def setvars(gene,drug):
|
|||
, 'rd_values']
|
||||
|
||||
X_evolFN = ['consurf_score'
|
||||
, 'snap2_score']
|
||||
|
||||
# quick inspection which lineage to use:
|
||||
#foo = my_df_ml[['lineage', 'lineage_count_all', 'lineage_count_unique']]
|
||||
, 'snap2_score'
|
||||
, 'provean_score']
|
||||
|
||||
X_genomicFN = ['maf'
|
||||
# , 'or_mychisq'
|
||||
# , 'or_logistic'
|
||||
# , 'or_fisher'
|
||||
# , 'pval_fisher'
|
||||
#, 'lineage'
|
||||
#, 'lineage_count_all'
|
||||
#, 'lineage_count_unique'
|
||||
]
|
||||
X_genomic_mafor = ['maf'
|
||||
, 'logorI'
|
||||
# , 'or_rawI'
|
||||
# , 'or_mychisq'
|
||||
# , 'or_logistic'
|
||||
# , 'or_fisher'
|
||||
# , 'pval_fisher'
|
||||
]
|
||||
|
||||
X_genomic_linegae = ['lineage_proportion'
|
||||
, 'dist_lineage_proportion'
|
||||
#, 'lineage' # could be included as a category but it has L2;L4 formatting
|
||||
, 'lineage_count_all'
|
||||
, 'lineage_count_unique'
|
||||
]
|
||||
|
||||
X_genomicFN = X_genomic_mafor+X_genomic_linegae
|
||||
|
||||
#%% Construct numerical and categorical column names
|
||||
|
||||
# numerical feature names
|
||||
numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
|
||||
|
||||
#categorical feature names
|
||||
categorical_FN = ['ss_class'
|
||||
# , 'wt_prop_water'
|
||||
# , 'lineage_labels' # misleading if using merged_df3
|
||||
# , 'mut_prop_water'
|
||||
# , 'wt_prop_polarity'
|
||||
# , 'mut_prop_polarity'
|
||||
# , 'wt_calcprop'
|
||||
# , 'mut_calcprop'
|
||||
#, 'active_aa_pos'
|
||||
# , 'wt_prop_water'
|
||||
# , 'mut_prop_water'
|
||||
# , 'wt_prop_polarity'
|
||||
# , 'mut_prop_polarity'
|
||||
# , 'wt_calcprop'
|
||||
# , 'mut_calcprop'
|
||||
, 'aa_prop_change'
|
||||
, 'electrostatics_change'
|
||||
, 'polarity_change'
|
||||
, 'water_change'
|
||||
, 'drtype_mode_labels' # beware then you can use it to predict
|
||||
# , 'active_aa_pos' # TODO?
|
||||
]
|
||||
|
||||
#%% extracting dfs based on numerical, categorical column names
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue