tidyed up ML data processing for actual processing

This commit is contained in:
Tanushree Tunstall 2022-05-29 06:03:36 +01:00
parent cbfbb525fa
commit 693a5324c1
2 changed files with 118 additions and 90 deletions

View file

@ -27,12 +27,11 @@ def setvars(gene,drug):
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
#%% REMOVE once config is set up
#from UQ_MultModelsCl import MultModelsCl
#%% FOR LATER: Combine ED logo data
#%% FOR LARER: active aa site annotations
###########################################################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
#%%
homedir = os.path.expanduser("~")
#==============
@ -70,45 +69,22 @@ def setvars(gene,drug):
# my_df['active_aa_pos'].dtype
# -- CHECK script -- imports.py
#%%============================================================================
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
or_cols = ['or_mychisq', 'log10_or_mychisq']
print("count of NULL values before imputation\n")
my_df[or_cols].isnull().sum()
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
, index = my_df['mutationinformation']
, columns = or_cols )
my_dfI.columns = ['or_rawI', 'logorI']
my_dfI.columns
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
my_dfI.head()
# merge with original based on index
my_df['index_bm'] = my_df.index
mydf_imputed = pd.merge(my_df
, my_dfI
, on = 'mutationinformation')
mydf_imputed = mydf_imputed.set_index(['index_bm'])
my_df['log10_or_mychisq'].isna().sum()
mydf_imputed['log10_or_mychisq'].isna().sum()
mydf_imputed['logorI'].isna().sum()
len(my_df.columns)
len(mydf_imputed.columns)
###########################################################################
#%% Add lineage calculation columns
#FIXME: Check if this can be imported from config?
total_mtblineage_u = 8
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
#bar = my_df[lineage_colnames]
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_u
###########################################################################
#%% AA property change
#--------------------
# Water prop change
#--------------------
my_df['water_change'] = my_df['wt_prop_water'] + str('_to_') + my_df['mut_prop_water']
my_df['water_change'].value_counts()
water_prop_changeD = {
'hydrophobic_to_neutral' : 'change'
, 'hydrophobic_to_hydrophobic' : 'no_change'
@ -123,8 +99,10 @@ def setvars(gene,drug):
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
my_df['water_change'].value_counts()
#--------------------
# Polarity change
#--------------------
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
my_df['polarity_change'].value_counts()
@ -148,8 +126,10 @@ def setvars(gene,drug):
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
my_df['polarity_change'].value_counts()
#--------------------
# Electrostatics change
#--------------------
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
my_df['electrostatics_change'].value_counts()
@ -174,8 +154,10 @@ def setvars(gene,drug):
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
my_df['electrostatics_change'].value_counts()
# Create a combined column summarising these three cols
#--------------------
# Summary change: Create a combined column summarising these three cols
#--------------------
detect_change = 'change'
check_prop_cols = ['water_change', 'polarity_change', 'electrostatics_change']
#my_df['aa_prop_change'] = (my_df.values == detect_change).any(1).astype(int)
@ -188,24 +170,56 @@ def setvars(gene,drug):
my_df['aa_prop_change'].value_counts()
my_df['aa_prop_change'].dtype
#%% Add lineage calc
total_mtblineage_u = 8
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
#bar = my_df[lineage_colnames]
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_u
#%% Combine mmCSM_lig Data: DONE
#%% Combine PROVEAN data: DONE
#%% Combine ED logo data
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
or_cols = ['or_mychisq', 'log10_or_mychisq']
print("count of NULL values before imputation\n")
print(my_df[or_cols].isnull().sum())
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
, index = my_df['mutationinformation']
, columns = or_cols )
my_dfI.columns = ['or_rawI', 'logorI']
my_dfI.columns
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
my_dfI.head()
print("count of NULL values AFTER imputation\n")
print(my_dfI.isnull().sum())
#-------------------------------------------
# OR df Merge: with original based on index
#-------------------------------------------
my_df['index_bm'] = my_df.index
mydf_imputed = pd.merge(my_df
, my_dfI
, on = 'mutationinformation')
mydf_imputed = mydf_imputed.set_index(['index_bm'])
my_df['log10_or_mychisq'].isna().sum()
mydf_imputed['log10_or_mychisq'].isna().sum()
mydf_imputed['logorI'].isna().sum()
len(my_df.columns)
len(mydf_imputed.columns)
#-----------------------------------------
# REASSIGN my_df after imputing OR values
#-----------------------------------------
my_df = mydf_imputed.copy()
#%%########################################################################
#==========================
# Data for ML
#==========================
my_df_ml = my_df.copy()
#%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
# get logic from upstream!
#my_df_ml = my_df.copy()
my_df_ml = mydf_imputed.copy()
my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.groupby(['mutationinformation'])['ligand_distance'].apply(lambda x: (x>10)).value_counts()
@ -213,7 +227,10 @@ def setvars(gene,drug):
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
(my_df_ml['ligand_affinity_change'] == 0).sum()
#%%============================================================================
#%%########################################################################
#==========================
# BLIND test set
#==========================
# Separate blind test set
my_df_ml[drug].isna().sum()
@ -227,13 +244,14 @@ def setvars(gene,drug):
training_df[drug].value_counts()
training_df['dst_mode'].value_counts()
#%% Build X
#%% Build X: input for ML
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2']
, 'ddg_dynamut2'
, 'mmcsm_lig']
foldX_cols = ['contacts'
, 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
@ -250,36 +268,45 @@ def setvars(gene,drug):
, 'rd_values']
X_evolFN = ['consurf_score'
, 'snap2_score']
# quick inspection which lineage to use:
#foo = my_df_ml[['lineage', 'lineage_count_all', 'lineage_count_unique']]
, 'snap2_score'
, 'provean_score']
X_genomicFN = ['maf'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
#, 'lineage'
#, 'lineage_count_all'
#, 'lineage_count_unique'
]
X_genomic_mafor = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_genomic_linegae = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_genomicFN = X_genomic_mafor+X_genomic_linegae
#%% Construct numerical and categorical column names
# numerical feature names
numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
#categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'lineage_labels' # misleading if using merged_df3
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
#, 'active_aa_pos'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'drtype_mode_labels' # beware then you can use it to predict
# , 'active_aa_pos' # TODO?
]
#%% extracting dfs based on numerical, categorical column names