trying under and oversampling

This commit is contained in:
Tanushree Tunstall 2022-05-26 07:38:21 +01:00
parent 8f8306d948
commit 5779331981
5 changed files with 129 additions and 16 deletions

View file

@ -60,6 +60,18 @@ from sklearn.ensemble import AdaBoostClassifier
from imblearn.combine import SMOTEENN
from imblearn.under_sampling import EditedNearestNeighbours
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import RidgeClassifier, SGDClassifier, PassiveAggressiveClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
#%%
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
@ -122,8 +134,7 @@ def MultClassPipeSKFCV(input_df, target, skf_cv, var_type = ['numerical', 'categ
mlp = MLPClassifier(max_iter = 500, **rs)
dt = DecisionTreeClassifier(**rs)
et = ExtraTreesClassifier(**rs)
rf = RandomForestClassifier(**rs,
n_estimators = 1000 )
rf = RandomForestClassifier(**rs, n_estimators = 1000 )
rf2 = RandomForestClassifier(
min_samples_leaf = 5
, n_estimators = 100 #10
@ -136,7 +147,7 @@ def MultClassPipeSKFCV(input_df, target, skf_cv, var_type = ['numerical', 'categ
lda = LinearDiscriminantAnalysis()
mnb = MultinomialNB(**rs)
mnb = MultinomialNB()
pa = PassiveAggressiveClassifier(**rs, **njobs)