added MultClassPipe2 that has one hot encoder step to the pipeline
This commit is contained in:
parent
f5dcf29e25
commit
564e72fc2d
4 changed files with 51 additions and 17 deletions
|
@ -23,6 +23,7 @@ from sklearn.model_selection import train_test_split
|
||||||
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
||||||
#%%
|
#%%
|
||||||
rs = {'random_state': 42}
|
rs = {'random_state': 42}
|
||||||
|
# TODO: add preprocessing step with one hot encoder
|
||||||
|
|
||||||
# Multiple Classification - Model Pipeline
|
# Multiple Classification - Model Pipeline
|
||||||
def MultClassPipeline(X_train, X_test, y_train, y_test):
|
def MultClassPipeline(X_train, X_test, y_train, y_test):
|
||||||
|
@ -35,6 +36,15 @@ def MultClassPipeline(X_train, X_test, y_train, y_test):
|
||||||
dt = DecisionTreeClassifier(**rs)
|
dt = DecisionTreeClassifier(**rs)
|
||||||
et = ExtraTreesClassifier(**rs)
|
et = ExtraTreesClassifier(**rs)
|
||||||
rf = RandomForestClassifier(**rs)
|
rf = RandomForestClassifier(**rs)
|
||||||
|
rf2 = RandomForestClassifier(
|
||||||
|
min_samples_leaf=50,
|
||||||
|
n_estimators=150,
|
||||||
|
bootstrap=True,
|
||||||
|
oob_score=True,
|
||||||
|
n_jobs=-1,
|
||||||
|
random_state=42,
|
||||||
|
max_features='auto')
|
||||||
|
|
||||||
xgb = XGBClassifier(**rs, verbosity=0)
|
xgb = XGBClassifier(**rs, verbosity=0)
|
||||||
|
|
||||||
clfs = [
|
clfs = [
|
||||||
|
@ -46,6 +56,7 @@ def MultClassPipeline(X_train, X_test, y_train, y_test):
|
||||||
('Decision Tree', dt),
|
('Decision Tree', dt),
|
||||||
('Extra Trees', et),
|
('Extra Trees', et),
|
||||||
('Random Forest', rf),
|
('Random Forest', rf),
|
||||||
|
('Random Forest2', rf2),
|
||||||
('XGBoost', xgb)
|
('XGBoost', xgb)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
Binary file not shown.
56
my_data9.py
56
my_data9.py
|
@ -7,7 +7,12 @@ Created on Sat Mar 5 12:57:32 2022
|
||||||
"""
|
"""
|
||||||
#%%
|
#%%
|
||||||
# data, etc for now comes from my_data6.py and/or my_data5.py
|
# data, etc for now comes from my_data6.py and/or my_data5.py
|
||||||
|
#%%
|
||||||
|
homedir = os.path.expanduser("~")
|
||||||
|
os.chdir(homedir + "/git/ML_AI_training/")
|
||||||
|
|
||||||
|
# my function
|
||||||
|
from MultClassPipe2 import MultClassPipeline2
|
||||||
#%% try combinations
|
#%% try combinations
|
||||||
#import sys, os
|
#import sys, os
|
||||||
#os.system("imports.py")
|
#os.system("imports.py")
|
||||||
|
@ -45,11 +50,19 @@ X_train, X_test, y_train, y_test = train_test_split(all_features_df,
|
||||||
preprocessor = ColumnTransformer(
|
preprocessor = ColumnTransformer(
|
||||||
transformers=[
|
transformers=[
|
||||||
('num', MinMaxScaler() , numerical_features_names)
|
('num', MinMaxScaler() , numerical_features_names)
|
||||||
#,('cat', OneHotEncoder(), categorical_features_names)
|
,('cat', OneHotEncoder(), categorical_features_names)
|
||||||
])
|
], remainder = 'passthrough')
|
||||||
|
|
||||||
|
f = preprocessor.fit(numerical_features_df)
|
||||||
|
f2 = preprocessor.transform(numerical_features_df)
|
||||||
|
|
||||||
|
f3 = preprocessor.fit_transform(numerical_features_df)
|
||||||
|
(f3==f2).all()
|
||||||
|
|
||||||
|
f4 = preprocessor.fit_transform(all_features_df)
|
||||||
|
f4
|
||||||
|
reprocessor.fit_transform(numerical_features_df)
|
||||||
|
|
||||||
preprocessor.fit(numerical_features_df)
|
|
||||||
preprocessor.transform(numerical_features_df)
|
|
||||||
#%%
|
#%%
|
||||||
model_log = Pipeline(steps = [
|
model_log = Pipeline(steps = [
|
||||||
('preprocess', preprocessor)
|
('preprocess', preprocessor)
|
||||||
|
@ -90,21 +103,30 @@ output = cross_validate(model, X_trainN, y_trainN
|
||||||
, cv = 10
|
, cv = 10
|
||||||
, return_train_score = False)
|
, return_train_score = False)
|
||||||
pd.DataFrame(output).mean()
|
pd.DataFrame(output).mean()
|
||||||
|
#%% Run multiple models using MultClassPipeline
|
||||||
|
# only good for numerical features as categ features is not supported yet!
|
||||||
|
t1_res = MultClassPipeline2(X_trainN, X_testN, y_trainN, y_testN, input_df = all_features_df)
|
||||||
|
t1_res
|
||||||
|
|
||||||
|
t2_res = MultClassPipeline2(X_train, X_test, y_train, y_test, input_df = all_features_df)
|
||||||
|
t2_res
|
||||||
#%%
|
#%%
|
||||||
|
# https://machinelearningmastery.com/columntransformer-for-numerical-and-categorical-data/
|
||||||
|
#Each transformer is a three-element tuple that defines the name of the transformer, the transform to apply, and the column indices to apply it to. For example:
|
||||||
|
# (Name, Object, Columns)
|
||||||
|
|
||||||
selector_logistic = RFECV(estimator = model
|
# Determine categorical and numerical features
|
||||||
, cv = 10
|
numerical_ix = all_features_df.select_dtypes(include=['int64', 'float64']).columns
|
||||||
, step = 1)
|
numerical_ix
|
||||||
|
categorical_ix = all_features_df.select_dtypes(include=['object', 'bool']).columns
|
||||||
|
categorical_ix
|
||||||
|
|
||||||
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df
|
# Define the data preparation for the columns
|
||||||
, target1
|
t = [('cat', OneHotEncoder(), categorical_ix)
|
||||||
, test_size = 0.33
|
, ('num', MinMaxScaler(), numerical_ix)]
|
||||||
, random_state = 42)
|
col_transform = ColumnTransformer(transformers=t
|
||||||
|
, remainder='passthrough')
|
||||||
|
# create pipeline (unlike example above where the col transfer was a preprocess step and it was fit_transformed)
|
||||||
|
|
||||||
selector_logistic_xtrain = selector_logistic.fit_transform(X_trainN, y_trainN)
|
pipeline = Pipeline(steps=[('prep', col_transform)
|
||||||
print(sel_rfe_logistic.get_support())
|
, ('classifier', clf)])
|
||||||
X_trainN.columns
|
|
||||||
|
|
||||||
print(sel_rfe_logistic.ranking_)
|
|
|
@ -351,6 +351,7 @@ pred
|
||||||
|
|
||||||
# make a pipeline
|
# make a pipeline
|
||||||
# PCA(Dimension reduction to two) -> Scaling the data -> DecisionTreeClassification
|
# PCA(Dimension reduction to two) -> Scaling the data -> DecisionTreeClassification
|
||||||
|
#https://www.geeksforgeeks.org/pipelines-python-and-scikit-learn/
|
||||||
pipe1 = Pipeline([('pca', PCA(n_components = 2))
|
pipe1 = Pipeline([('pca', PCA(n_components = 2))
|
||||||
, ('std', StandardScaler())
|
, ('std', StandardScaler())
|
||||||
, ('decision_tree', DecisionTreeClassifier())]
|
, ('decision_tree', DecisionTreeClassifier())]
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue