added MultClassPipe2 that has one hot encoder step to the pipeline
This commit is contained in:
parent
f5dcf29e25
commit
564e72fc2d
4 changed files with 51 additions and 17 deletions
|
@ -23,6 +23,7 @@ from sklearn.model_selection import train_test_split
|
|||
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
||||
#%%
|
||||
rs = {'random_state': 42}
|
||||
# TODO: add preprocessing step with one hot encoder
|
||||
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultClassPipeline(X_train, X_test, y_train, y_test):
|
||||
|
@ -35,6 +36,15 @@ def MultClassPipeline(X_train, X_test, y_train, y_test):
|
|||
dt = DecisionTreeClassifier(**rs)
|
||||
et = ExtraTreesClassifier(**rs)
|
||||
rf = RandomForestClassifier(**rs)
|
||||
rf2 = RandomForestClassifier(
|
||||
min_samples_leaf=50,
|
||||
n_estimators=150,
|
||||
bootstrap=True,
|
||||
oob_score=True,
|
||||
n_jobs=-1,
|
||||
random_state=42,
|
||||
max_features='auto')
|
||||
|
||||
xgb = XGBClassifier(**rs, verbosity=0)
|
||||
|
||||
clfs = [
|
||||
|
@ -46,6 +56,7 @@ def MultClassPipeline(X_train, X_test, y_train, y_test):
|
|||
('Decision Tree', dt),
|
||||
('Extra Trees', et),
|
||||
('Random Forest', rf),
|
||||
('Random Forest2', rf2),
|
||||
('XGBoost', xgb)
|
||||
]
|
||||
|
||||
|
|
Binary file not shown.
56
my_data9.py
56
my_data9.py
|
@ -7,7 +7,12 @@ Created on Sat Mar 5 12:57:32 2022
|
|||
"""
|
||||
#%%
|
||||
# data, etc for now comes from my_data6.py and/or my_data5.py
|
||||
#%%
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/")
|
||||
|
||||
# my function
|
||||
from MultClassPipe2 import MultClassPipeline2
|
||||
#%% try combinations
|
||||
#import sys, os
|
||||
#os.system("imports.py")
|
||||
|
@ -45,11 +50,19 @@ X_train, X_test, y_train, y_test = train_test_split(all_features_df,
|
|||
preprocessor = ColumnTransformer(
|
||||
transformers=[
|
||||
('num', MinMaxScaler() , numerical_features_names)
|
||||
#,('cat', OneHotEncoder(), categorical_features_names)
|
||||
])
|
||||
,('cat', OneHotEncoder(), categorical_features_names)
|
||||
], remainder = 'passthrough')
|
||||
|
||||
f = preprocessor.fit(numerical_features_df)
|
||||
f2 = preprocessor.transform(numerical_features_df)
|
||||
|
||||
f3 = preprocessor.fit_transform(numerical_features_df)
|
||||
(f3==f2).all()
|
||||
|
||||
f4 = preprocessor.fit_transform(all_features_df)
|
||||
f4
|
||||
reprocessor.fit_transform(numerical_features_df)
|
||||
|
||||
preprocessor.fit(numerical_features_df)
|
||||
preprocessor.transform(numerical_features_df)
|
||||
#%%
|
||||
model_log = Pipeline(steps = [
|
||||
('preprocess', preprocessor)
|
||||
|
@ -90,21 +103,30 @@ output = cross_validate(model, X_trainN, y_trainN
|
|||
, cv = 10
|
||||
, return_train_score = False)
|
||||
pd.DataFrame(output).mean()
|
||||
#%% Run multiple models using MultClassPipeline
|
||||
# only good for numerical features as categ features is not supported yet!
|
||||
t1_res = MultClassPipeline2(X_trainN, X_testN, y_trainN, y_testN, input_df = all_features_df)
|
||||
t1_res
|
||||
|
||||
|
||||
t2_res = MultClassPipeline2(X_train, X_test, y_train, y_test, input_df = all_features_df)
|
||||
t2_res
|
||||
#%%
|
||||
# https://machinelearningmastery.com/columntransformer-for-numerical-and-categorical-data/
|
||||
#Each transformer is a three-element tuple that defines the name of the transformer, the transform to apply, and the column indices to apply it to. For example:
|
||||
# (Name, Object, Columns)
|
||||
|
||||
selector_logistic = RFECV(estimator = model
|
||||
, cv = 10
|
||||
, step = 1)
|
||||
# Determine categorical and numerical features
|
||||
numerical_ix = all_features_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = all_features_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df
|
||||
, target1
|
||||
, test_size = 0.33
|
||||
, random_state = 42)
|
||||
# Define the data preparation for the columns
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)
|
||||
, ('num', MinMaxScaler(), numerical_ix)]
|
||||
col_transform = ColumnTransformer(transformers=t
|
||||
, remainder='passthrough')
|
||||
# create pipeline (unlike example above where the col transfer was a preprocess step and it was fit_transformed)
|
||||
|
||||
selector_logistic_xtrain = selector_logistic.fit_transform(X_trainN, y_trainN)
|
||||
print(sel_rfe_logistic.get_support())
|
||||
X_trainN.columns
|
||||
|
||||
print(sel_rfe_logistic.ranking_)
|
||||
pipeline = Pipeline(steps=[('prep', col_transform)
|
||||
, ('classifier', clf)])
|
|
@ -351,6 +351,7 @@ pred
|
|||
|
||||
# make a pipeline
|
||||
# PCA(Dimension reduction to two) -> Scaling the data -> DecisionTreeClassification
|
||||
#https://www.geeksforgeeks.org/pipelines-python-and-scikit-learn/
|
||||
pipe1 = Pipeline([('pca', PCA(n_components = 2))
|
||||
, ('std', StandardScaler())
|
||||
, ('decision_tree', DecisionTreeClassifier())]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue