various changes

This commit is contained in:
Tanushree Tunstall 2022-05-29 13:10:50 +01:00
parent f761dd4479
commit 5202be4adc
52 changed files with 1440 additions and 88 deletions

1
LR_FS.json Normal file
View file

@ -0,0 +1 @@
{"model_name": "GradientBoostingClassifier(n_estimators=10, random_state=42, subsample=0.7)", "model_refit_param": "mcc", "Best_model_params": {"clf__learning_rate": 0.1, "clf__max_depth": 3, "clf__n_estimators": 10, "clf__subsample": 0.7}, "n_all_features": 13, "fs_method": "RFECV(cv=RepeatedStratifiedKFold(n_repeats=3, n_splits=10, random_state=42),\n estimator=LogisticRegression(random_state=42),\n scoring='matthews_corrcoef')", "fs_res_array": "[False, False, False, False, True, False, False, True, False, False, False, False, True]", "fs_res_array_rank": [3, 5, 8, 2, 1, 10, 7, 1, 6, 4, 9, 11, 1], "all_feature_names": ["ligand_distance", "ligand_affinity_change", "duet_stability_change", "ddg_foldx", "deepddg", "ddg_dynamut2", "contacts", "rsa", "kd_values", "rd_values", "consurf_score", "snap2_score", "maf"], "n_sel_features": 2, "sel_features_names": ["ddg_foldx", "rd_values"], "bts_fscore": 0.7, "bts_precision": 0.56, "bts_recall": 0.93, "bts_accuracy": 0.61, "bts_roc_auc": 0.61, "bts_jaccard": 0.54, "train_score (MCC)": 0.23, "bts_mcc": 0.28, "train_bts_diff": -0.05}

12
MLfeature_types.py Normal file → Executable file
View file

@ -9,11 +9,11 @@ Created on Sun May 29 06:46:19 2022
#%% Build X: input for ML #%% Build X: input for ML
print('Strucutral features (n):' print('Strucutral features (n):'
, len(common_cols_stabiltyN) + len(foldX_cols) + len(X_strFN) , len(X_ssFN)
, '\nThese are:' , '\nThese are:'
, '\nCommon stablity features:', common_cols_stabiltyN , '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', foldX_cols , '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_strFN , '\nOther struc columns:', X_str
, '\n================================================================\n') , '\n================================================================\n')
print('Evolutionary features (n):' print('Evolutionary features (n):'
@ -36,3 +36,7 @@ print('Categorical features (n):'
, categorical_FN , categorical_FN
, '\n================================================================\n') , '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) +len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
print('\nFail: Count of feature mismatch')

0
MultClassPipe2.py Normal file → Executable file
View file

0
MultClassPipe3.py Normal file → Executable file
View file

0
MultClassPipe3_CALL.py Normal file → Executable file
View file

73
MultModelsCl_CALL.py Normal file → Executable file
View file

@ -6,36 +6,36 @@ Created on Tue Mar 15 11:09:50 2022
@author: tanu @author: tanu
""" """
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score # from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report # from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score # from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold # from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline # from sklearn.pipeline import Pipeline, make_pipeline
#%% GLOBALS # #%% GLOBALS
rs = {'random_state': 42} # rs = {'random_state': 42}
njobs = {'n_jobs': 10} # njobs = {'n_jobs': 10}
scoring_fn = ({'accuracy' : make_scorer(accuracy_score) # scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
, 'fscore' : make_scorer(f1_score) # , 'fscore' : make_scorer(f1_score)
, 'mcc' : make_scorer(matthews_corrcoef) # , 'mcc' : make_scorer(matthews_corrcoef)
, 'precision' : make_scorer(precision_score) # , 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score) # , 'recall' : make_scorer(recall_score)
, 'roc_auc' : make_scorer(roc_auc_score) # , 'roc_auc' : make_scorer(roc_auc_score)
, 'jcc' : make_scorer(jaccard_score) # , 'jcc' : make_scorer(jaccard_score)
}) # })
skf_cv = StratifiedKFold(n_splits = 10 # skf_cv = StratifiedKFold(n_splits = 10
#, shuffle = False, random_state= None) # #, shuffle = False, random_state= None)
, shuffle = True,**rs) # , shuffle = True,**rs)
rskf_cv = RepeatedStratifiedKFold(n_splits = 10 # rskf_cv = RepeatedStratifiedKFold(n_splits = 10
, n_repeats = 3 # , n_repeats = 3
, **rs) # , **rs)
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)} # mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)} # jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
############################################################################### ###############################################################################
#%% MultModelsCl: function call() #%% MultModelsCl: function call()
@ -55,6 +55,9 @@ baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1) baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True) baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical] #%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc , target = y_smnc
@ -70,6 +73,10 @@ smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1) smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True) smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical #%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros , target = y_ros
@ -85,6 +92,9 @@ ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1) ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True) ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical #%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus , target = y_rus
@ -100,6 +110,9 @@ rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1) rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True) rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical #%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC , target = y_rouC
@ -116,6 +129,8 @@ rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1) rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True) rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')
#%% SMOTE OS: Numerical only #%% SMOTE OS: Numerical only
# mm_skf_scoresD2 = MultModelsCl(input_df = X_sm # mm_skf_scoresD2 = MultModelsCl(input_df = X_sm
# , target = y_sm # , target = y_sm
@ -130,6 +145,8 @@ rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# sm_BT = sm_all.filter(like='bts_', axis=1) # sm_BT = sm_all.filter(like='bts_', axis=1)
#sm_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True) #sm_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
#sm_BT.to_csv(outdir + 'ml/' + gene.lower() + '_sm_BT_allF.csv')
#%% SMOTE ENN: Over + Undersampling combined: Numerical ONLY #%% SMOTE ENN: Over + Undersampling combined: Numerical ONLY
# mm_skf_scoresD5 = MultModelsCl(input_df = X_enn # mm_skf_scoresD5 = MultModelsCl(input_df = X_enn
# , target = y_enn # , target = y_enn
@ -146,6 +163,9 @@ rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# enn_BT = enn_all.filter(like='bts_', axis=1) # enn_BT = enn_all.filter(like='bts_', axis=1)
#enn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True) #enn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
#enn_BT.to_csv(outdir + 'ml/' + gene.lower() + '_enn_BT_allF.csv')
#%% Repeated ENN #%% Repeated ENN
# mm_skf_scoresD6 = MultModelsCl(input_df = X_renn # mm_skf_scoresD6 = MultModelsCl(input_df = X_renn
# , target = y_renn # , target = y_renn
@ -161,5 +181,6 @@ rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# renn_BT = renn_all.filter(like='bts_', axis=1) # renn_BT = renn_all.filter(like='bts_', axis=1)
# renn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True) # renn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
###############################################################################
# end of script
##############################################################################

0
UQ_FS_eg.py Normal file → Executable file
View file

0
UQ_FS_fn.py Normal file → Executable file
View file

0
UQ_FS_fn_CALL.py Normal file → Executable file
View file

0
UQ_FS_mixed_eg.py Normal file → Executable file
View file

0
UQ_Imbalance.py Normal file → Executable file
View file

0
UQ_LR_FS_p1.py Normal file → Executable file
View file

0
UQ_LR_FS_p2.py Normal file → Executable file
View file

0
UQ_LR_p1.py Normal file → Executable file
View file

158
UQ_ML_data.py Normal file → Executable file
View file

@ -27,6 +27,37 @@ def setvars(gene,drug):
from imblearn.under_sampling import EditedNearestNeighbours from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.under_sampling import RepeatedEditedNearestNeighbours from imblearn.under_sampling import RepeatedEditedNearestNeighbours
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline
#%% GLOBALS
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
, 'accuracy' : make_scorer(accuracy_score)
, 'fscore' : make_scorer(f1_score)
, 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score)
, 'roc_auc' : make_scorer(roc_auc_score)
, 'jcc' : make_scorer(jaccard_score)
})
skf_cv = StratifiedKFold(n_splits = 10
#, shuffle = False, random_state= None)
, shuffle = True,**rs)
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
, n_repeats = 3
, **rs)
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% FOR LATER: Combine ED logo data #%% FOR LATER: Combine ED logo data
#%% FOR LARER: active aa site annotations #%% FOR LARER: active aa site annotations
########################################################################### ###########################################################################
@ -52,31 +83,41 @@ def setvars(gene,drug):
my_df_cols = my_df.columns my_df_cols = my_df.columns
geneL_basic = ['pnca'] geneL_basic = ['pnca']
geneL_na = ['gid']
# -- CHECK script -- imports.py geneL_na_ppi2 = ['rpob']
geneL_ppi2 = ['alr', 'embb', 'katg']
#%% get cols #%% get cols
mycols = my_df.columns mycols = my_df.columns
mycols
# change from numberic to # # change from numberic to
num_type = ['int64', 'float64'] # num_type = ['int64', 'float64']
cat_type = ['object', 'bool'] # cat_type = ['object', 'bool']
#TODO:
# #Treat active site aa pos as category and not numerical: This needs to be part of merged_df3!
# if my_df['active_aa_pos'].dtype in num_type: # if my_df['active_aa_pos'].dtype in num_type:
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object) # my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
# my_df['active_aa_pos'].dtype # my_df['active_aa_pos'].dtype
# -- CHECK script -- imports.py # FIXME: if this is not structural, remove from source..
# Drop NA where numerical cols have them
if gene.lower() in geneL_na_ppi2:
#D1148 get rid of
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
my_df = my_df.drop(index=na_index)
# FIXME: either impute or remove!
# for embb (L114M, F115L, V123L, V125I, V131M) delete for now
if gene.lower() in ['embb']:
na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
my_df = my_df.drop(index=na_index)# RERUN embb with the 5 values now present
########################################################################### ###########################################################################
#%% Add lineage calculation columns #%% Add lineage calculation columns
#FIXME: Check if this can be imported from config? #FIXME: Check if this can be imported from config?
total_mtblineage_u = 8 total_mtblineage_uc = 8
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode'] lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
#bar = my_df[lineage_colnames] #bar = my_df[lineage_colnames]
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all'] my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_u my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
########################################################################### ###########################################################################
#%% AA property change #%% AA property change
#-------------------- #--------------------
@ -219,15 +260,6 @@ def setvars(gene,drug):
#========================== #==========================
my_df_ml = my_df.copy() my_df_ml = my_df.copy()
#%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.groupby(['mutationinformation'])['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
(my_df_ml['ligand_affinity_change'] == 0).sum()
#%%########################################################################
#========================== #==========================
# BLIND test set # BLIND test set
#========================== #==========================
@ -254,7 +286,31 @@ def setvars(gene,drug):
, 'mmcsm_lig' , 'mmcsm_lig'
, 'contacts'] , 'contacts']
foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss' # Build stability columns ~ gene
if gene.lower() in geneL_basic:
X_stabilityN = common_cols_stabiltyN
cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist']
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity']
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss' , 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss' , 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss' , 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
@ -262,11 +318,13 @@ def setvars(gene,drug):
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss' , 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
] ]
X_strFN = ['rsa' X_str = ['rsa'
#, 'asa' #, 'asa'
, 'kd_values' , 'kd_values'
, 'rd_values'] , 'rd_values']
X_ssFN = X_stabilityN + X_str + X_foldX_cols
X_evolFN = ['consurf_score' X_evolFN = ['consurf_score'
, 'snap2_score' , 'snap2_score'
, 'provean_score'] , 'provean_score']
@ -291,7 +349,9 @@ def setvars(gene,drug):
#%% Construct numerical and categorical column names #%% Construct numerical and categorical column names
# numerical feature names # numerical feature names
numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN # numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
numerical_FN = X_ssFN + X_evolFN + X_genomicFN
#categorical feature names #categorical feature names
categorical_FN = ['ss_class' categorical_FN = ['ss_class'
@ -308,6 +368,31 @@ def setvars(gene,drug):
, 'drtype_mode_labels' # beware then you can use it to predict , 'drtype_mode_labels' # beware then you can use it to predict
#, 'active_aa_pos' # TODO? #, 'active_aa_pos' # TODO?
] ]
###########################################################################
#=======================
# Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#=======================
#%% Masking columns
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
# (my_df_ml['ligand_affinity_change'] == 0).sum()
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
# mask the column ligand distance > 10
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask] = 0
(my_df_ml['ligand_affinity_change'] == 0).sum()
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
# write file for check
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#%% extracting dfs based on numerical, categorical column names #%% extracting dfs based on numerical, categorical column names
#---------------------------------- #----------------------------------
@ -335,12 +420,12 @@ def setvars(gene,drug):
all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']] all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
all_df_wtgt.shape all_df_wtgt.shape
#%%================================================================ #%%########################################################################
#%% Apply ML #============
# ML data
#%% Data #============
#------ #------
# X # X: Training and Blind test (BTS)
#------ #------
X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
@ -353,16 +438,17 @@ def setvars(gene,drug):
y = all_df_wtgt['dst_mode'] # training data y y = all_df_wtgt['dst_mode'] # training data y
y_bts = blind_test_df['dst_mode'] # blind data test y y_bts = blind_test_df['dst_mode'] # blind data test y
#Blind test data {same format} #X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
#X_bts = blind_test_df[numerical_FN]
#X_bts = blind_test_df[numerical_FN + categorical_FN]
#y_bts = blind_test_df['dst_mode']
X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
# Quick check # Quick check
(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum() #(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
############################################################################## for i in range(len(cols_to_mask)):
ind = i+1
print('\nindex:', i, '\nind:', ind)
print('\nMask count check:'
, (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
)
print('Original Data\n', Counter(y) print('Original Data\n', Counter(y)
, 'Data dim:', X.shape) , 'Data dim:', X.shape)

0
UQ_MultClassPipe4.py Normal file → Executable file
View file

4
UQ_MultModelsCl.py Normal file → Executable file
View file

@ -74,9 +74,9 @@ import json
rs = {'random_state': 42} rs = {'random_state': 42}
njobs = {'n_jobs': 10} njobs = {'n_jobs': 10}
scoring_fn = ({'accuracy' : make_scorer(accuracy_score) scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
, 'accuracy' : make_scorer(accuracy_score)
, 'fscore' : make_scorer(f1_score) , 'fscore' : make_scorer(f1_score)
, 'mcc' : make_scorer(matthews_corrcoef)
, 'precision' : make_scorer(precision_score) , 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score) , 'recall' : make_scorer(recall_score)
, 'roc_auc' : make_scorer(roc_auc_score) , 'roc_auc' : make_scorer(roc_auc_score)

0
UQ_RF.py Normal file → Executable file
View file

0
UQ_TODO_categorical_classification_columns.py Normal file → Executable file
View file

0
UQ_imbalance.py Normal file → Executable file
View file

0
UQ_or_impute.py Normal file → Executable file
View file

0
UQ_pnca_ML.py Normal file → Executable file
View file

0
UQ_practice.py Normal file → Executable file
View file

0
UQ_yc_RunAllClfs.py Normal file → Executable file
View file

101
UQ_yc_RunAllClfs_CALL.py Executable file
View file

@ -0,0 +1,101 @@
from UQ_yc_RunAllClfs import run_all_ML
#%% CALL function
#run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
# Baseline_data
YC_resD2 = run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
CVResultsDF_baseline = YC_resD2['CrossValResultsDF']
CVResultsDF_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
BTSResultsDF_baseline = YC_resD2['BlindTestResultsDF']
BTSResultsDF_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
# from sklearn.utils import all_estimators
# for name, algorithm in all_estimators(type_filter="classifier"):
# clf = algorithm()
# print('Name:', name, '\nAlgo:', clf)
# Random Oversampling
YC_resD_ros = run_all_ML(input_pd=X_ros, target_label=y_ros, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
CVResultsDF_ros = YC_resD_ros['CrossValResultsDF']
CVResultsDF_ros.sort_values(by=['matthew'], ascending=False, inplace=True)
BTSResultsDF_ros = YC_resD_ros['BlindTestResultsDF']
BTSResultsDF_ros.sort_values(by=['matthew'], ascending=False, inplace=True)
# Random Undersampling
YC_resD_rus = run_all_ML(input_pd=X_rus, target_label=y_rus, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
CVResultsDF_rus = YC_resD_rus['CrossValResultsDF']
CVResultsDF_rus.sort_values(by=['matthew'], ascending=False, inplace=True)
BTSResultsDF_rus = YC_resD_rus['BlindTestResultsDF']
BTSResultsDF_rus.sort_values(by=['matthew'], ascending=False, inplace=True)
# Random Oversampling+Undersampling
YC_resD_rouC = run_all_ML(input_pd=X_rouC, target_label=y_rouC, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
CVResultsDF_rouC = YC_resD_rouC['CrossValResultsDF']
CVResultsDF_rouC.sort_values(by=['matthew'], ascending=False, inplace=True)
BTSResultsDF_rouC = YC_resD_rouC['BlindTestResultsDF']
BTSResultsDF_rouC.sort_values(by=['matthew'], ascending=False, inplace=True)
# SMOTE NC
YC_resD_smnc = run_all_ML(input_pd=X_smnc, target_label=y_smnc, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
CVResultsDF_smnc = YC_resD_smnc['CrossValResultsDF']
CVResultsDF_smnc.sort_values(by=['matthew'], ascending=False, inplace=True)
BTSResultsDF_smnc = YC_resD_smnc['BlindTestResultsDF']
BTSResultsDF_smnc.sort_values(by=['matthew'], ascending=False, inplace=True)
##############################################################################
#============================================
# BASELINE models with dissected featues
#============================================
# Genomics
yC_gf = run_all_ML(input_pd=X[X_genomicFN], target_label=y, blind_test_input_df=X_bts[X_genomicFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
yc_gfCT_baseline= yC_gf['CrossValResultsDF']
yc_gfCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
yc_gfBT_baseline = yC_gf['BlindTestResultsDF']
yc_gfBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
# Evolutionary
yC_ev = run_all_ML(input_pd=X[X_evolFN], target_label=y, blind_test_input_df=X_bts[X_evolFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
yc_evCT_baseline= yC_ev['CrossValResultsDF']
yc_evCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
yc_evBT_baseline = yC_ev['BlindTestResultsDF']
yc_evBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
# strucF:All
yC_sfall = run_all_ML(input_pd=X[X_strFN], target_label=y, blind_test_input_df=X_bts[X_strFN], blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
yc_sfallCT_baseline= yC_sfall['CrossValResultsDF']
yc_sfallCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
yc_sfallBT_baseline = yC_sfall['BlindTestResultsDF']
yc_sfallBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
# strucF:Common ONLY
c = [x for x in X_ssFN if x not in X_foldX_cols]
yC_sfco= run_all_ML(input_pd=X[X_stabilityN], target_label=y
, blind_test_input_df=X_bts[x_stabilityN]
, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
yc_sfcoCT_baseline= yC_sfco['CrossValResultsDF']
yc_sfcoCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
yc_sfcoBT_baseline = yC_sfco['BlindTestResultsDF']
yc_sfcoBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
# strucF:common_stability + foldX_cols i.e interaction
yC_fxss= run_all_ML(input_pd=X[common_cols_stabiltyN+foldX_cols], target_label=y
, blind_test_input_df=X_bts[common_cols_stabiltyN+foldX_cols]
, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
yc_fxssCT_baseline= yC_fxss['CrossValResultsDF']
yc_fxssCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
yc_fxssBT_baseline = yC_fxss['BlindTestResultsDF']
yc_fxssBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
# categorical
yC_cat= run_all_ML(input_pd=X[categorical_FN], target_label=y
, blind_test_input_df=X_bts[categorical_FN]
, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
yc_catCT_baseline= yC_cat['CrossValResultsDF']
yc_catCT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
yc_catBT_baseline = yC_cat['BlindTestResultsDF']
yc_catBT_baseline.sort_values(by=['matthew'], ascending=False, inplace=True)
#=================================================
# Dissected features with Over and Undersampling
#=================================================

176
alr_config.py Executable file
View file

@ -0,0 +1,176 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'alr'
drug = 'cycloserine'
#total_mtblineage_u = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/ML_AI_training/')
from UQ_ML_data import *
setvars(gene,drug)
from UQ_ML_data import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from UQ_MultModelsCl import MultModelsCl
#%%###########################################################################
print('\n#####################################################################\n')
print('TESTING cmd:'
, '\nGene name:', gene
, '\nDrug name:', drug
, '\nTotal input features:', X.shape
, '\n', Counter(y))
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) +len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
print('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')

0
base_estimator.py Normal file → Executable file
View file

0
base_estimator2.py Normal file → Executable file
View file

0
base_estimator3.py Normal file → Executable file
View file

0
classification_params_FS.py Normal file → Executable file
View file

0
cross_validate_vs_loopity_loop.py Normal file → Executable file
View file

176
embb_config.py Executable file
View file

@ -0,0 +1,176 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'embB'
drug = 'ethambutol'
#total_mtblineage_u = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/ML_AI_training/')
from UQ_ML_data import *
setvars(gene,drug)
from UQ_ML_data import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from UQ_MultModelsCl import MultModelsCl
#%%###########################################################################
print('\n#####################################################################\n')
print('TESTING cmd:'
, '\nGene name:', gene
, '\nDrug name:', drug
, '\nTotal input features:', X.shape
, '\n', Counter(y))
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) +len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
print('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')

176
gid_config.py Executable file
View file

@ -0,0 +1,176 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'gid'
drug = 'streptomycin'
#total_mtblineage_u = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/ML_AI_training/')
from UQ_ML_data import *
setvars(gene,drug)
from UQ_ML_data import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from UQ_MultModelsCl import MultModelsCl
#%%###########################################################################
print('\n#####################################################################\n')
print('TESTING cmd:'
, '\nGene name:', gene
, '\nDrug name:', drug
, '\nTotal input features:', X.shape
, '\n', Counter(y))
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) +len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
print('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')

0
grid_search_vs_base_estimator.py Normal file → Executable file
View file

0
gscv.py Normal file → Executable file
View file

0
gscv_eg.py Normal file → Executable file
View file

0
imbalance_p1.py Normal file → Executable file
View file

0
imbalance_p2.py Normal file → Executable file
View file

10
imports.py Normal file → Executable file
View file

@ -99,8 +99,8 @@ from MultClassPipe2 import MultClassPipeline2
from loopity_loop import MultClassPipeSKFLoop from loopity_loop import MultClassPipeSKFLoop
from MultClassPipe3 import MultClassPipeSKFCV from MultClassPipe3 import MultClassPipeSKFCV
gene = 'pncA' #gene = 'pncA'
drug = 'pyrazinamide' #drug = 'pyrazinamide'
#============== #==============
# directories # directories
@ -119,10 +119,10 @@ my_df = pd.read_csv(infile_ml1)
my_df.dtypes my_df.dtypes
my_df_cols = my_df.columns my_df_cols = my_df.columns
geneL_basic = ['pnca'] geneL_basic = ['pncA']
geneL_na = ['gid'] geneL_na = ['gid']
geneL_na_ppi2 = ['rpob'] geneL_na_ppi2 = ['rpoB']
geneL_ppi2 = ['alr', 'embb', 'katg'] geneL_ppi2 = ['alr', 'embB', 'katG']
#%% get cols #%% get cols
mycols = my_df.columns mycols = my_df.columns

0
imports_unsup.py Normal file → Executable file
View file

0
intra_model_gscv.py Normal file → Executable file
View file

0
itertools.py Normal file → Executable file
View file

174
katg_config.py Executable file
View file

@ -0,0 +1,174 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'katG'
drug = 'isoniazid'
#total_mtblineage_u = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/ML_AI_training/')
from UQ_ML_data import *
setvars(gene,drug)
from UQ_ML_data import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from UQ_MultModelsCl import MultModelsCl
#%%###########################################################################
print('\n#####################################################################\n')
print('TESTING cmd:'
, '\nGene name:', gene
, '\nDrug name:', drug
, '\nTotal input features:', X.shape
, '\n', Counter(y))
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) +len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
print('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')

0
loopity_loop.py Normal file → Executable file
View file

0
loopity_loop_CALL.py Normal file → Executable file
View file

View file

@ -10,7 +10,7 @@ import os
gene = 'pncA' gene = 'pncA'
drug = 'pyrazinamide' drug = 'pyrazinamide'
#total_mtblineage_u = 8 #total_mtblineage_uc = 8
homedir = os.path.expanduser("~") homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/ML_AI_training/') os.chdir( homedir + '/git/ML_AI_training/')
@ -20,7 +20,7 @@ setvars(gene,drug)
from UQ_ML_data import * from UQ_ML_data import *
# from YC run_all_ML: run locally # from YC run_all_ML: run locally
from UQ_yc_RunAllClfs import run_all_ML #from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode # TT run all ML clfs: baseline mode
from UQ_MultModelsCl import MultModelsCl from UQ_MultModelsCl import MultModelsCl
@ -28,6 +28,7 @@ from UQ_MultModelsCl import MultModelsCl
#%%########################################################################### #%%###########################################################################
print('\n#####################################################################\n') print('\n#####################################################################\n')
print('TESTING cmd:' print('TESTING cmd:'
, '\nGene name:', gene , '\nGene name:', gene
, '\nDrug name:', drug , '\nDrug name:', drug
@ -35,11 +36,11 @@ print('TESTING cmd:'
, '\n', Counter(y)) , '\n', Counter(y))
print('Strucutral features (n):' print('Strucutral features (n):'
, len(common_cols_stabiltyN) + len(foldX_cols) + len(X_strFN) , len(X_ssFN)
, '\nThese are:' , '\nThese are:'
, '\nCommon stablity features:', common_cols_stabiltyN , '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', foldX_cols , '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_strFN , '\nOther struc columns:', X_str
, '\n================================================================\n') , '\n================================================================\n')
print('Evolutionary features (n):' print('Evolutionary features (n):'
@ -60,7 +61,115 @@ print('Categorical features (n):'
, '\nThese are:\n' , '\nThese are:\n'
, categorical_FN , categorical_FN
, '\n================================================================\n') , '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) +len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
print('\nFail: Count of feature mismatch')
print('\n#####################################################################\n') print('\n#####################################################################\n')
################################################################################ ################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')

60
rfecv_vis.py Normal file
View file

@ -0,0 +1,60 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun May 29 12:21:34 2022
@author: tanu
"""
from sklearn.svm import SVC
from sklearn.datasets import make_classification
from yellowbrick.model_selection import RFECV
# Instantiate RFECV visualizer with a linear SVM classifier
visualizer = RFECV(SVC(kernel='linear', C=1))
visualizer.fit(X[numerical_FN], y) # Fit the data to the visualizer
visualizer.show()
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
categorical_ix
# Determine preprocessing steps ~ var_type
var_type = 'mixed'
var_type = 'numerical'
if var_type == 'numerical':
t = [('num', MinMaxScaler(), numerical_ix)]
if var_type == 'categorical':
t = [('cat', OneHotEncoder(), categorical_ix)]
if var_type == 'mixed':
t = [('cat', OneHotEncoder(), categorical_ix)
, ('num', MinMaxScaler(), numerical_ix)]
t = [('num', MinMaxScaler(), numerical_ix)
, ('cat', OneHotEncoder(), categorical_ix)]
col_transform = ColumnTransformer(transformers = t
, remainder='passthrough')
#--------------ALEX help
# col_transform
# col_transform.fit(X)
# test = col_transform.transform(X)
# print(col_transform.get_feature_names_out())
# foo = col_transform.fit_transform(X)
Xm = col_transform.fit_transform(X)
# (foo == test).all()
#-----------------------
visualizer.fit(Xm, y) # Fit the data to the visualizer
visualizer.show()
visualizer.fit(X[numerical_FN], y) # Fit the data to the visualizer
visualizer.show()

0
rfecv_with_ohe.py Normal file → Executable file
View file

176
rpob_config.py Executable file
View file

@ -0,0 +1,176 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'rpoB'
drug = 'rifampicin'
#total_mtblineage_u = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/ML_AI_training/')
from UQ_ML_data import *
setvars(gene,drug)
from UQ_ML_data import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from UQ_MultModelsCl import MultModelsCl
#%%###########################################################################
print('\n#####################################################################\n')
print('TESTING cmd:'
, '\nGene name:', gene
, '\nDrug name:', drug
, '\nTotal input features:', X.shape
, '\n', Counter(y))
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) +len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
print('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')

92
temp.py Executable file
View file

@ -0,0 +1,92 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun May 29 09:22:51 2022
@author: tanu
"""
geneL_basic = ['pncA']
geneL_na = ['gid']
geneL_na_ppi2 = ['rpoB']
geneL_ppi2 = ['alr', 'embB', 'katG']
#%% get cols
mycols = my_df.columns
# # change from numberic to
# num_type = ['int64', 'float64']
# cat_type = ['object', 'bool']
# if my_df['active_aa_pos'].dtype in num_type:
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
# my_df['active_aa_pos'].dtype
# FIXME: if this is not structural, remove from source..
# Drop NA where numerical cols have them
if gene.lower() in geneL_na_ppi2:
#D1148 get rid of
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
my_df = my_df.drop(index=na_index)
# FIXME: either impute or remove!
# for embb (L114M, F115L, V123L, V125I, V131M) delete for now
if gene.lower() in ['embb']:
na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
#my_df = my_df.drop(index=na_index))# RERUN embb with the 5 values now present
#%%===========================================================================
#%%
# GET X
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'contacts']
# Build stability columns ~ gene
if gene.lower() in geneL_basic:
x_stabilityN = common_cols_stabiltyN
cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2:
# x_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist']
x_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na:
# x_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity']
x_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2:
# x_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
x_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
#%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
# mask the column ligand distance > 10
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask] = 0
(my_df_ml['ligand_affinity_change'] == 0).sum()
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
for i in range(len(cols_to_mask)):
ind = i+1
print('\nindex:', i, '\nind:', ind)
print('\nMask count check:'
, (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
)
(my_df_ml[cols_to_mask[0]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
(my_df_ml[cols_to_mask[1]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()

0
umap_fs.py Normal file → Executable file
View file

0
unsup_v1.py Normal file → Executable file
View file