various changes
This commit is contained in:
parent
f761dd4479
commit
5202be4adc
52 changed files with 1440 additions and 88 deletions
60
rfecv_vis.py
Normal file
60
rfecv_vis.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun May 29 12:21:34 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.datasets import make_classification
|
||||
|
||||
from yellowbrick.model_selection import RFECV
|
||||
|
||||
# Instantiate RFECV visualizer with a linear SVM classifier
|
||||
visualizer = RFECV(SVC(kernel='linear', C=1))
|
||||
|
||||
visualizer.fit(X[numerical_FN], y) # Fit the data to the visualizer
|
||||
visualizer.show()
|
||||
|
||||
|
||||
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
# Determine preprocessing steps ~ var_type
|
||||
var_type = 'mixed'
|
||||
var_type = 'numerical'
|
||||
|
||||
if var_type == 'numerical':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
if var_type == 'categorical':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
if var_type == 'mixed':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)
|
||||
, ('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
t = [('num', MinMaxScaler(), numerical_ix)
|
||||
, ('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
#--------------ALEX help
|
||||
# col_transform
|
||||
# col_transform.fit(X)
|
||||
# test = col_transform.transform(X)
|
||||
# print(col_transform.get_feature_names_out())
|
||||
|
||||
# foo = col_transform.fit_transform(X)
|
||||
Xm = col_transform.fit_transform(X)
|
||||
# (foo == test).all()
|
||||
#-----------------------
|
||||
|
||||
visualizer.fit(Xm, y) # Fit the data to the visualizer
|
||||
visualizer.show()
|
||||
|
||||
|
||||
visualizer.fit(X[numerical_FN], y) # Fit the data to the visualizer
|
||||
visualizer.show()
|
Loading…
Add table
Add a link
Reference in a new issue