modified ml params and models
This commit is contained in:
parent
3ed7840f60
commit
4dbc90ad44
6 changed files with 17 additions and 332 deletions
|
@ -27,7 +27,7 @@ from sklearn.compose import ColumnTransformer
|
||||||
from sklearn.compose import make_column_transformer
|
from sklearn.compose import make_column_transformer
|
||||||
|
|
||||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
||||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score
|
||||||
from sklearn.metrics import make_scorer
|
from sklearn.metrics import make_scorer
|
||||||
from sklearn.metrics import classification_report
|
from sklearn.metrics import classification_report
|
||||||
|
|
||||||
|
@ -70,7 +70,7 @@ scoring_fn = ({ 'fscore' : make_scorer(f1_score)
|
||||||
, 'recall' : make_scorer(recall_score)
|
, 'recall' : make_scorer(recall_score)
|
||||||
, 'accuracy' : make_scorer(accuracy_score)
|
, 'accuracy' : make_scorer(accuracy_score)
|
||||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||||
#, 'jaccard' : make_scorer(jaccard_score)
|
, 'jaccard' : make_scorer(jaccard_score)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
||||||
|
@ -122,10 +122,11 @@ def MultClassPipeSKFCV(input_df, target, skf_cv, var_type = ['numerical', 'categ
|
||||||
mlp = MLPClassifier(max_iter = 500, **rs)
|
mlp = MLPClassifier(max_iter = 500, **rs)
|
||||||
dt = DecisionTreeClassifier(**rs)
|
dt = DecisionTreeClassifier(**rs)
|
||||||
et = ExtraTreesClassifier(**rs)
|
et = ExtraTreesClassifier(**rs)
|
||||||
rf = RandomForestClassifier(**rs)
|
rf = RandomForestClassifier(**rs,
|
||||||
|
n_estimators = 1000 )
|
||||||
rf2 = RandomForestClassifier(
|
rf2 = RandomForestClassifier(
|
||||||
min_samples_leaf = 50
|
min_samples_leaf = 5
|
||||||
, n_estimators = 150
|
, n_estimators = 1000
|
||||||
, bootstrap = True
|
, bootstrap = True
|
||||||
, oob_score = True
|
, oob_score = True
|
||||||
, **njobs
|
, **njobs
|
||||||
|
|
|
@ -1,257 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
# -*- coding: utf-8 -*-
|
|
||||||
"""
|
|
||||||
Created on Sun Mar 6 13:41:54 2022
|
|
||||||
|
|
||||||
@author: tanu
|
|
||||||
"""
|
|
||||||
import os, sys
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
import pprint as pp
|
|
||||||
from copy import deepcopy
|
|
||||||
from sklearn import linear_model
|
|
||||||
from sklearn.linear_model import LogisticRegression, LinearRegression
|
|
||||||
from sklearn.naive_bayes import BernoulliNB
|
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
|
||||||
from sklearn.svm import SVC
|
|
||||||
from sklearn.tree import DecisionTreeClassifier
|
|
||||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
|
|
||||||
from sklearn.ensemble import AdaBoostClassifier
|
|
||||||
from sklearn.ensemble import GradientBoostingClassifier
|
|
||||||
from sklearn.neural_network import MLPClassifier
|
|
||||||
from xgboost import XGBClassifier
|
|
||||||
from sklearn.naive_bayes import MultinomialNB
|
|
||||||
from sklearn.linear_model import SGDClassifier
|
|
||||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
|
||||||
|
|
||||||
from sklearn.compose import ColumnTransformer
|
|
||||||
from sklearn.compose import make_column_transformer
|
|
||||||
|
|
||||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
|
|
||||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef
|
|
||||||
from sklearn.metrics import jaccard_score
|
|
||||||
|
|
||||||
from sklearn.metrics import make_scorer
|
|
||||||
from sklearn.metrics import classification_report
|
|
||||||
|
|
||||||
from sklearn.metrics import average_precision_score
|
|
||||||
|
|
||||||
from sklearn.model_selection import cross_validate
|
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
from sklearn.model_selection import StratifiedKFold
|
|
||||||
|
|
||||||
from sklearn.pipeline import Pipeline
|
|
||||||
from sklearn.pipeline import make_pipeline
|
|
||||||
|
|
||||||
from sklearn.feature_selection import RFE
|
|
||||||
from sklearn.feature_selection import RFECV
|
|
||||||
import itertools
|
|
||||||
import seaborn as sns
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
print(np.__version__)
|
|
||||||
print(pd.__version__)
|
|
||||||
from statistics import mean, stdev, median, mode
|
|
||||||
|
|
||||||
from imblearn.over_sampling import RandomOverSampler
|
|
||||||
from imblearn.over_sampling import SMOTE
|
|
||||||
from imblearn.pipeline import Pipeline
|
|
||||||
#from sklearn.datasets import make_classification
|
|
||||||
from sklearn.model_selection import cross_validate, cross_val_score
|
|
||||||
from sklearn.model_selection import RepeatedStratifiedKFold
|
|
||||||
from sklearn.ensemble import AdaBoostClassifier
|
|
||||||
from imblearn.combine import SMOTEENN
|
|
||||||
from imblearn.under_sampling import EditedNearestNeighbours
|
|
||||||
|
|
||||||
from sklearn.model_selection import GridSearchCV
|
|
||||||
from sklearn.base import BaseEstimator
|
|
||||||
|
|
||||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
|
||||||
, 'fscore' : make_scorer(f1_score)
|
|
||||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
|
||||||
, 'precision' : make_scorer(precision_score)
|
|
||||||
, 'recall' : make_scorer(recall_score)
|
|
||||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
|
||||||
, 'jcc' : make_scorer(jaccard_score)
|
|
||||||
})
|
|
||||||
|
|
||||||
rs = {'random_state': 42}
|
|
||||||
njobs = {'n_jobs': 10}
|
|
||||||
skf_cv = StratifiedKFold(n_splits = 10
|
|
||||||
#, shuffle = False, random_state= None)
|
|
||||||
, shuffle = True,**rs)
|
|
||||||
|
|
||||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|
||||||
, n_repeats=3
|
|
||||||
#, shuffle = False, random_state= None)
|
|
||||||
#, shuffle = True
|
|
||||||
,**rs)
|
|
||||||
#my_mcc = make_scorer({'mcc':make_scorer(matthews_corrcoef})
|
|
||||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
|
||||||
|
|
||||||
#%%
|
|
||||||
homedir = os.path.expanduser("~")
|
|
||||||
os.chdir(homedir + "/git/ML_AI_training/")
|
|
||||||
|
|
||||||
# my function
|
|
||||||
#from MultClassPipe import MultClassPipeline
|
|
||||||
from MultClassPipe2 import MultClassPipeline2
|
|
||||||
from loopity_loop import MultClassPipeSKFLoop
|
|
||||||
from MultClassPipe3 import MultClassPipeSKFCV
|
|
||||||
|
|
||||||
gene = 'pncA'
|
|
||||||
drug = 'pyrazinamide'
|
|
||||||
|
|
||||||
#==============
|
|
||||||
# directories
|
|
||||||
#==============
|
|
||||||
datadir = homedir + '/git/Data/'
|
|
||||||
indir = datadir + drug + '/input/'
|
|
||||||
outdir = datadir + drug + '/output/'
|
|
||||||
|
|
||||||
#=======
|
|
||||||
# input
|
|
||||||
#=======
|
|
||||||
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
|
|
||||||
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
|
|
||||||
|
|
||||||
my_df = pd.read_csv(infile_ml1, index_col = 0)
|
|
||||||
my_df.dtypes
|
|
||||||
my_df_cols = my_df.columns
|
|
||||||
|
|
||||||
geneL_basic = ['pnca']
|
|
||||||
|
|
||||||
# -- CHECK script -- imports.py
|
|
||||||
#%% get cols
|
|
||||||
mycols = my_df.columns
|
|
||||||
mycols
|
|
||||||
|
|
||||||
# change from numberic to
|
|
||||||
num_type = ['int64', 'float64']
|
|
||||||
cat_type = ['object', 'bool']
|
|
||||||
|
|
||||||
# TODO:
|
|
||||||
# Treat active site aa pos as category and not numerical: This needs to be part of merged_df3!
|
|
||||||
#if my_df['active_aa_pos'].dtype in num_type:
|
|
||||||
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
|
|
||||||
# my_df['active_aa_pos'].dtype
|
|
||||||
|
|
||||||
# -- CHECK script -- imports.py
|
|
||||||
#%%============================================================================
|
|
||||||
#%% IMPUTE values for OR
|
|
||||||
|
|
||||||
#%% Combine mmCSM_lig Data
|
|
||||||
|
|
||||||
#%% Combine PROVEAN data
|
|
||||||
|
|
||||||
#%% Combine ED logo data
|
|
||||||
|
|
||||||
#%% Masking columns (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
|
|
||||||
|
|
||||||
# get logic from upstream!
|
|
||||||
my_df_ml = my_df.copy()
|
|
||||||
|
|
||||||
my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
|
|
||||||
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
|
||||||
my_df_ml.groupby(['mutationinformation'])['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
|
||||||
|
|
||||||
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
|
|
||||||
(my_df_ml['ligand_affinity_change'] == 0).sum()
|
|
||||||
|
|
||||||
#%%============================================================================
|
|
||||||
# Separate blind test set
|
|
||||||
my_df_ml[drug].isna().sum()
|
|
||||||
|
|
||||||
blind_test_df = my_df_ml[my_df_ml[drug].isna()]
|
|
||||||
|
|
||||||
training_df = my_df_ml[my_df_ml[drug].notna()]
|
|
||||||
|
|
||||||
# Target1: dst
|
|
||||||
training_df[drug].value_counts()
|
|
||||||
training_df['dst_mode'].value_counts()
|
|
||||||
|
|
||||||
#%% Build X
|
|
||||||
common_cols_stabiltyN = ['ligand_distance'
|
|
||||||
, 'ligand_affinity_change'
|
|
||||||
, 'duet_stability_change'
|
|
||||||
, 'ddg_foldx'
|
|
||||||
, 'deepddg'
|
|
||||||
, 'ddg_dynamut2']
|
|
||||||
|
|
||||||
foldX_cols = ['contacts'
|
|
||||||
#, 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
|
||||||
#, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
|
||||||
#, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
|
||||||
#, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
|
|
||||||
#, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
|
|
||||||
#, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
|
|
||||||
]
|
|
||||||
|
|
||||||
X_strFN = ['rsa'
|
|
||||||
#, 'asa'
|
|
||||||
, 'kd_values'
|
|
||||||
, 'rd_values']
|
|
||||||
|
|
||||||
X_evolFN = ['consurf_score'
|
|
||||||
, 'snap2_score']
|
|
||||||
|
|
||||||
# quick inspection which lineage to use:
|
|
||||||
#foo = my_df_ml[['lineage', 'lineage_count_all', 'lineage_count_unique']]
|
|
||||||
|
|
||||||
X_genomicFN = ['maf'
|
|
||||||
# , 'or_mychisq'
|
|
||||||
# , 'or_logistic'
|
|
||||||
# , 'or_fisher'
|
|
||||||
# , 'pval_fisher'
|
|
||||||
#, 'lineage'
|
|
||||||
, 'lineage_count_all'
|
|
||||||
, 'lineage_count_unique'
|
|
||||||
]
|
|
||||||
|
|
||||||
#%% Construct numerical and categorical column names
|
|
||||||
|
|
||||||
# numerical feature names
|
|
||||||
numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
|
|
||||||
|
|
||||||
#categorical feature names
|
|
||||||
categorical_FN = ['ss_class'
|
|
||||||
, 'wt_prop_water'
|
|
||||||
# , 'lineage_labels' # misleading if using merged_df3
|
|
||||||
, 'mut_prop_water'
|
|
||||||
, 'wt_prop_polarity'
|
|
||||||
, 'mut_prop_polarity'
|
|
||||||
, 'wt_calcprop'
|
|
||||||
, 'mut_calcprop'
|
|
||||||
#, 'active_aa_pos'
|
|
||||||
]
|
|
||||||
|
|
||||||
#%% extracting dfs based on numerical, categorical column names
|
|
||||||
#----------------------------------
|
|
||||||
# WITHOUT the target var included
|
|
||||||
#----------------------------------
|
|
||||||
num_df = training_df[numerical_FN]
|
|
||||||
num_df.shape
|
|
||||||
|
|
||||||
cat_df = training_df[categorical_FN]
|
|
||||||
cat_df.shape
|
|
||||||
|
|
||||||
all_df = training_df[numerical_FN + categorical_FN]
|
|
||||||
all_df.shape
|
|
||||||
|
|
||||||
#------------------------------
|
|
||||||
# WITH the target var included:
|
|
||||||
#'wtgt': with target
|
|
||||||
#------------------------------
|
|
||||||
# drug and dst_mode should be the same thing
|
|
||||||
num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
|
|
||||||
num_df_wtgt.shape
|
|
||||||
|
|
||||||
cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
|
|
||||||
cat_df_wtgt.shape
|
|
||||||
|
|
||||||
all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
|
|
||||||
all_df_wtgt.shape
|
|
||||||
#%%================================================================
|
|
||||||
#%% Apply ML
|
|
||||||
|
|
|
@ -1,56 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
# -*- coding: utf-8 -*-
|
|
||||||
"""
|
|
||||||
Created on Mon May 16 05:59:12 2022
|
|
||||||
|
|
||||||
@author: tanu
|
|
||||||
"""
|
|
||||||
#!/usr/bin/env python3
|
|
||||||
# -*- coding: utf-8 -*-
|
|
||||||
"""
|
|
||||||
Created on Tue Mar 15 11:09:50 2022
|
|
||||||
|
|
||||||
@author: tanu
|
|
||||||
"""
|
|
||||||
#%% Data
|
|
||||||
X = all_df_wtgt[numerical_FN+categorical_FN]
|
|
||||||
X = all_df_wtgt[numerical_FN]
|
|
||||||
|
|
||||||
y = all_df_wtgt['dst_mode']
|
|
||||||
#%% variables
|
|
||||||
|
|
||||||
#%% MultClassPipeSKFCV: function call()
|
|
||||||
mm_skf_scoresD = MultClassPipeSKFCV(input_df = X
|
|
||||||
, target = y
|
|
||||||
, var_type = 'numerical'
|
|
||||||
, skf_cv = skf_cv)
|
|
||||||
|
|
||||||
|
|
||||||
mm_skf_scores_df_all = pd.DataFrame(mm_skf_scoresD)
|
|
||||||
mm_skf_scores_df_all
|
|
||||||
mm_skf_scores_df_test = mm_skf_scores_df_all.filter(like='test_', axis=0)
|
|
||||||
mm_skf_scores_df_train = mm_skf_scores_df_all.filter(like='train_', axis=0) # helps to see if you trust the results
|
|
||||||
|
|
||||||
#%% CHECK with BLIND test
|
|
||||||
#%%
|
|
||||||
import plotly.express as px
|
|
||||||
|
|
||||||
corr = X.corr(method = 'spearman')
|
|
||||||
corr.head()
|
|
||||||
|
|
||||||
#p = corr.style.background_gradient(cmap='coolwarm')
|
|
||||||
p = corr.style.background_gradient(cmap='coolwarm').set_precision(2)
|
|
||||||
p
|
|
||||||
|
|
||||||
fig = px.imshow(corr)
|
|
||||||
fig.show()
|
|
||||||
|
|
||||||
|
|
||||||
#%%TODO:
|
|
||||||
# Add correlation plot
|
|
||||||
# Remove low variance features
|
|
||||||
# Add feature selection
|
|
||||||
# Then run your models on BLIND test WITHOUT CV
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Binary file not shown.
|
@ -17,16 +17,11 @@ from sklearn.model_selection import GridSearchCV
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||||
from xgboost import XGBClassifier
|
from xgboost import XGBClassifier
|
||||||
#%% Get train-test split and scoring functions
|
#######################################################
|
||||||
X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
|
y.to_frame().value_counts().plot(kind = 'bar')
|
||||||
, num_df_wtgt['mutation_class']
|
|
||||||
, test_size = 0.33
|
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
|
||||||
, random_state = 2
|
|
||||||
, shuffle = True
|
|
||||||
, stratify = num_df_wtgt['mutation_class'])
|
|
||||||
|
|
||||||
y_train.to_frame().value_counts().plot(kind = 'bar')
|
|
||||||
y_test.to_frame().value_counts().plot(kind = 'bar')
|
|
||||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||||
, 'fscore' : make_scorer(f1_score)
|
, 'fscore' : make_scorer(f1_score)
|
||||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||||
|
|
|
@ -32,7 +32,7 @@ names = [
|
||||||
]
|
]
|
||||||
|
|
||||||
classifiers = [
|
classifiers = [
|
||||||
KNeighborsClassifier(3),
|
KNeighborsClassifier(5),
|
||||||
SVC(kernel="linear", C=0.025),
|
SVC(kernel="linear", C=0.025),
|
||||||
SVC(gamma=2, C=1),
|
SVC(gamma=2, C=1),
|
||||||
GaussianProcessClassifier(1.0 * RBF(1.0)),
|
GaussianProcessClassifier(1.0 * RBF(1.0)),
|
||||||
|
@ -97,7 +97,7 @@ classifiers = [
|
||||||
))
|
))
|
||||||
|
|
||||||
gs_knn_params = {
|
gs_knn_params = {
|
||||||
'clf__n_neighbors': [3, 7, 10]
|
'clf__n_neighbors': [5, 7, 11]
|
||||||
#, 'clf__n_neighbors': range(1, 21, 2)
|
#, 'clf__n_neighbors': range(1, 21, 2)
|
||||||
,'clf__metric' : ['euclidean', 'manhattan', 'minkowski']
|
,'clf__metric' : ['euclidean', 'manhattan', 'minkowski']
|
||||||
, 'clf__weights' : ['uniform', 'distance']
|
, 'clf__weights' : ['uniform', 'distance']
|
||||||
|
@ -120,7 +120,7 @@ classifiers = [
|
||||||
, 'clf__min_samples_leaf': [2, 4, 8, 50]
|
, 'clf__min_samples_leaf': [2, 4, 8, 50]
|
||||||
, 'clf__min_samples_split': [10, 20]
|
, 'clf__min_samples_split': [10, 20]
|
||||||
}
|
}
|
||||||
#%% XGBClassifier()
|
#%% XGBClassifier() # SPNT
|
||||||
# https://stackoverflow.com/questions/34674797/xgboost-xgbclassifier-defaults-in-python
|
# https://stackoverflow.com/questions/34674797/xgboost-xgbclassifier-defaults-in-python
|
||||||
# https://stackoverflow.com/questions/34674797/xgboost-xgbclassifier-defaults-in-python
|
# https://stackoverflow.com/questions/34674797/xgboost-xgbclassifier-defaults-in-python
|
||||||
gs_xgb = Pipeline((
|
gs_xgb = Pipeline((
|
||||||
|
@ -135,6 +135,7 @@ classifiers = [
|
||||||
, 'clf__min_samples_leaf': [4, 8, 12, 16, 20]
|
, 'clf__min_samples_leaf': [4, 8, 12, 16, 20]
|
||||||
, 'clf__max_features': ['auto', 'sqrt']
|
, 'clf__max_features': ['auto', 'sqrt']
|
||||||
}
|
}
|
||||||
|
|
||||||
#%% MLPClassifier()
|
#%% MLPClassifier()
|
||||||
# https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
|
# https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
|
||||||
gs_mlp = Pipeline((
|
gs_mlp = Pipeline((
|
||||||
|
@ -190,6 +191,7 @@ classifiers = [
|
||||||
# If None, then the base estimator is a DecisionTreeClassifier.
|
# If None, then the base estimator is a DecisionTreeClassifier.
|
||||||
, 'clf__base_estimator' : ['None', 'SVC()', 'KNeighborsClassifier()']# if none, DT is used
|
, 'clf__base_estimator' : ['None', 'SVC()', 'KNeighborsClassifier()']# if none, DT is used
|
||||||
, 'clf__gamma': ['scale', 'auto'] }
|
, 'clf__gamma': ['scale', 'auto'] }
|
||||||
|
|
||||||
#%% GradientBoostingClassifier()
|
#%% GradientBoostingClassifier()
|
||||||
# https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
|
# https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
|
||||||
gs_gb = Pipeline((
|
gs_gb = Pipeline((
|
||||||
|
@ -198,7 +200,7 @@ classifiers = [
|
||||||
))
|
))
|
||||||
|
|
||||||
gs_bdt_params = {
|
gs_bdt_params = {
|
||||||
'clf__n_estimators' : [10, 100, 1000]
|
'clf__n_estimators' : [10, 100, 200, 500, 1000]
|
||||||
, 'clf__n_estimators' : [10, 100, 1000]
|
, 'clf__n_estimators' : [10, 100, 1000]
|
||||||
, 'clf__learning_rate': [0.001, 0.01, 0.1]
|
, 'clf__learning_rate': [0.001, 0.01, 0.1]
|
||||||
, 'clf__subsample' : [0.5, 0.7, 1.0]
|
, 'clf__subsample' : [0.5, 0.7, 1.0]
|
||||||
|
@ -261,4 +263,4 @@ BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
|
||||||
, 'clf__binarize':['None', 0]
|
, 'clf__binarize':['None', 0]
|
||||||
, 'clf__fit_prior': [True]
|
, 'clf__fit_prior': [True]
|
||||||
, 'clf__class_prior': ['None']
|
, 'clf__class_prior': ['None']
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue