added sripts to try FS
This commit is contained in:
parent
3742a5f62d
commit
4a9e9dfedf
2 changed files with 168 additions and 0 deletions
64
UQ_FS_eg.py
Normal file
64
UQ_FS_eg.py
Normal file
|
@ -0,0 +1,64 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Sat May 21 02:52:36 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
# https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.pipeline import Pipeline
|
||||||
|
from sklearn.datasets import make_classification
|
||||||
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.ensemble import RandomForestClassifier
|
||||||
|
from sklearn.feature_selection import SelectKBest, mutual_info_classif
|
||||||
|
#pd.options.plotting.backend = "plotly"
|
||||||
|
X_eg, y_eg = make_classification(n_samples=1000,
|
||||||
|
n_features=30,
|
||||||
|
n_informative=5,
|
||||||
|
n_redundant=5,
|
||||||
|
n_classes=2,
|
||||||
|
random_state=123)
|
||||||
|
|
||||||
|
pipe = Pipeline([('scaler', StandardScaler()),
|
||||||
|
('selector', SelectKBest(mutual_info_classif, k=9)),
|
||||||
|
('classifier', LogisticRegression())])
|
||||||
|
|
||||||
|
search_space = [{'selector__k': [5, 6, 7, 10]},
|
||||||
|
{'classifier': [LogisticRegression()],
|
||||||
|
'classifier__C': [0.01,1.0],
|
||||||
|
'classifier__solver': ['saga', 'lbfgs']},
|
||||||
|
{'classifier': [RandomForestClassifier(n_estimators=100)],
|
||||||
|
'classifier__max_depth': [5, 10, None]},
|
||||||
|
{'classifier': [KNeighborsClassifier()],
|
||||||
|
'classifier__n_neighbors': [3, 7, 11],
|
||||||
|
'classifier__weights': ['uniform', 'distance']}]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
clf = GridSearchCV(pipe, search_space, cv=10, verbose=0)
|
||||||
|
|
||||||
|
clf2 = clf.fit(X_eg, y_eg)
|
||||||
|
clf2._check_feature_names
|
||||||
|
clf2.best_estimator_.named_steps['selector'].n_features_in_
|
||||||
|
|
||||||
|
clf2.best_estimator_ #n of best features
|
||||||
|
clf2.best_params_
|
||||||
|
clf2.best_estimator_.get_params
|
||||||
|
clf2.get_feature_names()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
clf3 = clf2.best_estimator_ #
|
||||||
|
clf3._final_estimator
|
||||||
|
clf3._final_estimator.C
|
||||||
|
clf3._final_estimator.solver
|
||||||
|
|
||||||
|
|
||||||
|
fs_bmod = clf2.best_estimator_
|
||||||
|
print('\nbest model with feature selection:', fs_bmod)
|
||||||
|
|
||||||
|
|
104
UQ_LR_FS_p2.py
Normal file
104
UQ_LR_FS_p2.py
Normal file
|
@ -0,0 +1,104 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Mon May 16 05:59:12 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Tue Mar 15 11:09:50 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
#%% Import libraries, data, and scoring func: UQ_pnca_ML.py
|
||||||
|
rs = {'random_state': 42}
|
||||||
|
njobs = {'n_jobs': 10}
|
||||||
|
#%% Logistic Regression + hyperparam: BaseEstimator: ClfSwitcher()
|
||||||
|
|
||||||
|
class ClfSwitcher(BaseEstimator):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
estimator = SGDClassifier(),
|
||||||
|
#feature = RFECV()
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
A Custom BaseEstimator that can switch between classifiers.
|
||||||
|
:param estimator: sklearn object - The classifier
|
||||||
|
"""
|
||||||
|
self.estimator = estimator
|
||||||
|
|
||||||
|
def fit(self, X, y=None, **kwargs):
|
||||||
|
self.estimator.fit(X, y)
|
||||||
|
return self
|
||||||
|
|
||||||
|
def predict(self, X, y=None):
|
||||||
|
return self.estimator.predict(X)
|
||||||
|
|
||||||
|
def predict_proba(self, X):
|
||||||
|
return self.estimator.predict_proba(X)
|
||||||
|
|
||||||
|
def score(self, X, y):
|
||||||
|
return self.estimator.score(X, y)
|
||||||
|
|
||||||
|
parameters = [
|
||||||
|
# {'feature__fs__estimator': LogisticRegression(**rs)
|
||||||
|
# , 'feature__fs__cv': [10]
|
||||||
|
# , 'feature__fs__scoring': ['matthews_corrcoef']
|
||||||
|
# },
|
||||||
|
|
||||||
|
{
|
||||||
|
'clf__estimator': [LogisticRegression(**rs)],
|
||||||
|
'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||||
|
#'clf__estimator__C': np.logspace(0, 4, 10),
|
||||||
|
'clf__estimator__penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||||
|
'clf__estimator__max_iter': list(range(100,800,100)),
|
||||||
|
'clf__estimator__solver': ['saga']
|
||||||
|
}#,
|
||||||
|
# {
|
||||||
|
# 'clf__estimator': [MODEL2(**rs)],
|
||||||
|
# #'clf__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||||
|
# 'clf__estimator__C': np.logspace(0, 4, 10),
|
||||||
|
# 'clf__estimator__penalty': ['l2', 'none'],
|
||||||
|
# 'clf__estimator__max_iter': list(range(100,800,100)),
|
||||||
|
# 'clf__estimator__solver': ['newton-cg', 'lbfgs', 'sag']
|
||||||
|
# },
|
||||||
|
]
|
||||||
|
#%% Create pipeline
|
||||||
|
pipeline = Pipeline([
|
||||||
|
('pre', MinMaxScaler())
|
||||||
|
# , ('fs', RFECV(LogisticRegression(**rs), cv = rskf_cv, scoring = 'matthews_corrcoef'))
|
||||||
|
, ('selector', SelectKBest(mutual_info_classif, k=6))
|
||||||
|
, ('clf', ClfSwitcher())
|
||||||
|
])
|
||||||
|
|
||||||
|
#%% Grid search i.e hyperparameter tuning and refitting on mcc
|
||||||
|
mod_fs = GridSearchCV(pipeline
|
||||||
|
, parameters
|
||||||
|
, scoring = mcc_score_fn, refit = 'mcc'
|
||||||
|
, cv = skf_cv
|
||||||
|
, **njobs
|
||||||
|
, return_train_score = False
|
||||||
|
, verbose = 3)
|
||||||
|
|
||||||
|
#%% Fit
|
||||||
|
mod_fs_fit = mod_fs.fit(X, y)
|
||||||
|
mod_fs_fbm = mod_fs_fit.best_params_
|
||||||
|
mod_fs_fbmr = mod_fs_fit.cv_results_
|
||||||
|
mod_fs_fbs = mod_fs_fit.best_score_
|
||||||
|
print('Best model:\n', mod_fs_fbm)
|
||||||
|
print('Best models score:\n', mod_fs_fbs, ':' , round(mod_fs_fbs, 2))
|
||||||
|
|
||||||
|
#print('\nMean test score from fit results:', round(mean(mod_fs_fbmr['mean_test_mcc']),2))
|
||||||
|
print('\nMean test score from fit results:', round(np.nanmean(mod_fs_fbmr['mean_test_mcc']),2))
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#%% Blind test
|
||||||
|
######################################
|
||||||
|
# Blind test
|
||||||
|
######################################
|
||||||
|
test_predict = mod_fs_fit.predict(X_bts)
|
||||||
|
print(test_predict)
|
||||||
|
print('\nMCC on Blind test:' , round(matthews_corrcoef(y_bts, test_predict),2))
|
||||||
|
print('\nAccuracy on Blind test:', round(accuracy_score(y_bts, test_predict),2))
|
Loading…
Add table
Add a link
Reference in a new issue