added sripts to try FS
This commit is contained in:
parent
3742a5f62d
commit
4a9e9dfedf
2 changed files with 168 additions and 0 deletions
64
UQ_FS_eg.py
Normal file
64
UQ_FS_eg.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat May 21 02:52:36 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
# https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
|
||||
import pandas as pd
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.datasets import make_classification
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.feature_selection import SelectKBest, mutual_info_classif
|
||||
#pd.options.plotting.backend = "plotly"
|
||||
X_eg, y_eg = make_classification(n_samples=1000,
|
||||
n_features=30,
|
||||
n_informative=5,
|
||||
n_redundant=5,
|
||||
n_classes=2,
|
||||
random_state=123)
|
||||
|
||||
pipe = Pipeline([('scaler', StandardScaler()),
|
||||
('selector', SelectKBest(mutual_info_classif, k=9)),
|
||||
('classifier', LogisticRegression())])
|
||||
|
||||
search_space = [{'selector__k': [5, 6, 7, 10]},
|
||||
{'classifier': [LogisticRegression()],
|
||||
'classifier__C': [0.01,1.0],
|
||||
'classifier__solver': ['saga', 'lbfgs']},
|
||||
{'classifier': [RandomForestClassifier(n_estimators=100)],
|
||||
'classifier__max_depth': [5, 10, None]},
|
||||
{'classifier': [KNeighborsClassifier()],
|
||||
'classifier__n_neighbors': [3, 7, 11],
|
||||
'classifier__weights': ['uniform', 'distance']}]
|
||||
|
||||
|
||||
|
||||
clf = GridSearchCV(pipe, search_space, cv=10, verbose=0)
|
||||
|
||||
clf2 = clf.fit(X_eg, y_eg)
|
||||
clf2._check_feature_names
|
||||
clf2.best_estimator_.named_steps['selector'].n_features_in_
|
||||
|
||||
clf2.best_estimator_ #n of best features
|
||||
clf2.best_params_
|
||||
clf2.best_estimator_.get_params
|
||||
clf2.get_feature_names()
|
||||
|
||||
|
||||
|
||||
clf3 = clf2.best_estimator_ #
|
||||
clf3._final_estimator
|
||||
clf3._final_estimator.C
|
||||
clf3._final_estimator.solver
|
||||
|
||||
|
||||
fs_bmod = clf2.best_estimator_
|
||||
print('\nbest model with feature selection:', fs_bmod)
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue