trying one_hot encoder for categ vars, which was sucessful but not rfecv
This commit is contained in:
parent
6160d943f5
commit
3bf63c522c
2 changed files with 327 additions and 0 deletions
209
imports.py
Normal file
209
imports.py
Normal file
|
@ -0,0 +1,209 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Mar 6 13:41:54 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn import linear_model
|
||||
from sklearn.linear_model import LogisticRegression, LinearRegression
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
||||
from sklearn.metrics import make_scorer
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.pipeline import make_pipeline
|
||||
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.feature_selection import RFECV
|
||||
import itertools
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
from statistics import mean, stdev
|
||||
#%%
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/")
|
||||
|
||||
# my function
|
||||
from MultClassPipe import MultClassPipeline
|
||||
|
||||
gene = 'pncA'
|
||||
drug = 'pyrazinamide'
|
||||
|
||||
#==============
|
||||
# directories
|
||||
#==============
|
||||
datadir = homedir + '/git/Data/'
|
||||
indir = datadir + drug + '/input/'
|
||||
outdir = datadir + drug + '/output/'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
|
||||
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
|
||||
|
||||
my_df = pd.read_csv(infile_ml1)
|
||||
my_df.dtypes
|
||||
my_df_cols = my_df.columns
|
||||
|
||||
geneL_basic = ['pnca']
|
||||
geneL_na = ['gid']
|
||||
geneL_na_ppi2 = ['rpob']
|
||||
geneL_ppi2 = ['alr', 'embb', 'katg']
|
||||
#%% get cols
|
||||
mycols = my_df.columns
|
||||
|
||||
#%%============================================================================
|
||||
# GET Y
|
||||
|
||||
# Target1: mutation_info_labels
|
||||
dm_om_map = {'DM': 1, 'OM': 0}
|
||||
target1 = my_df['mutation_info_labels'].map(dm_om_map)
|
||||
|
||||
# Target2: drug
|
||||
drug_labels = drug + '_labels'
|
||||
drug_labels
|
||||
my_df[drug_labels] = my_df[drug].map({1: 'resistant', 0: 'sensitive'})
|
||||
my_df[drug_labels].value_counts()
|
||||
my_df[drug_labels] = my_df[drug_labels].fillna('unknown')
|
||||
my_df[drug_labels].value_counts()
|
||||
target2 = my_df[drug_labels]
|
||||
|
||||
# Target3: drtype [Binary]
|
||||
drtype_labels = 'drtype_labels'
|
||||
my_df[drtype_labels] = my_df['drtype'].map({'Sensitive' : 0
|
||||
, 'Other' : 0
|
||||
, 'Pre-MDR' : 1
|
||||
, 'MDR' : 1
|
||||
, 'Pre-XDR' : 1
|
||||
, 'XDR' : 1})
|
||||
# target3 = 'drtype' [Multinomial]
|
||||
target3 = my_df[drtype_labels]
|
||||
|
||||
# target4
|
||||
drtype_labels2 = 'drtype_labels2'
|
||||
my_df[drtype_labels2] = my_df['drtype'].map({'Sensitive' : 0
|
||||
, 'Other' : 0
|
||||
, 'Pre-MDR' : 1
|
||||
, 'MDR' : 1
|
||||
, 'Pre-XDR' : 2
|
||||
, 'XDR' : 2})
|
||||
target4 = my_df[drtype_labels2]
|
||||
|
||||
# sanity checks
|
||||
target1.value_counts()
|
||||
my_df['mutation_info_labels'].value_counts()
|
||||
|
||||
target2.value_counts()
|
||||
my_df[drug_labels].value_counts()
|
||||
|
||||
target3.value_counts()
|
||||
my_df['drtype'].value_counts()
|
||||
target4.value_counts()
|
||||
my_df['drtype'].value_counts()
|
||||
|
||||
#%%
|
||||
# GET X
|
||||
common_cols_stabiltyN = ['ligand_distance'
|
||||
, 'ligand_affinity_change'
|
||||
, 'duet_stability_change'
|
||||
, 'ddg_foldx'
|
||||
, 'deepddg'
|
||||
, 'ddg_dynamut2']
|
||||
|
||||
# Build stability columns ~ gene
|
||||
if gene.lower() in geneL_basic:
|
||||
x_stabilityN = common_cols_stabiltyN
|
||||
|
||||
if gene.lower() in geneL_ppi2:
|
||||
x_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity'
|
||||
, 'interface_dist']
|
||||
if gene.lower() in geneL_na:
|
||||
x_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity']
|
||||
|
||||
if gene.lower() in geneL_na_ppi2:
|
||||
x_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
|
||||
#D1148 get rid of
|
||||
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
|
||||
my_df = my_df.drop(index=na_index)
|
||||
|
||||
X_strFN = ['asa'
|
||||
, 'rsa'
|
||||
, 'kd_values'
|
||||
, 'rd_values']
|
||||
|
||||
X_evolFN = ['consurf_score'
|
||||
, 'snap2_score'
|
||||
, 'snap2_accuracy_pc']
|
||||
|
||||
# TODO: ADD ED values
|
||||
# Problematic due to NA: filling NA with unknown or string will make it categorical
|
||||
# OPTIONS
|
||||
# 1. Imputing: KNN or MICE or from distribution
|
||||
# 2. Fill na with median or mode
|
||||
# 3. Separate datset without including genomic features AT ALL for ML, then using this as a 'blind test set'
|
||||
# this means the size of the training data gets reduced!
|
||||
# 4. Remove genomic features from ML COMPLETELEY!
|
||||
|
||||
# X_genomicFN = ['af'
|
||||
# , 'or_mychisq'
|
||||
# , 'or_logistic'
|
||||
# , 'or_fisher'
|
||||
# , 'pval_fisher']
|
||||
|
||||
#%% try combinations
|
||||
X_vars1 = my_df[x_stabilityN]
|
||||
X_vars2 = my_df[X_strFN]
|
||||
X_vars3 = my_df[X_evolFN]
|
||||
|
||||
X_vars5 = my_df[x_stabilityN + X_strFN]
|
||||
X_vars6 = my_df[x_stabilityN + X_evolFN]
|
||||
#X_vars7 = my_df[x_stabilityN + X_genomicFN]
|
||||
X_vars8 = my_df[X_strFN + X_evolFN]
|
||||
#X_vars9 = my_df[X_strFN + X_genomicFN]
|
||||
#X_vars10 = my_df[X_evolFN + X_genomicFN]
|
||||
X_vars11 = my_df[x_stabilityN + X_strFN + X_evolFN]
|
||||
#X_vars12 = my_df[x_stabilityN + X_strFN + X_evolFN + X_genomicFN]
|
||||
|
||||
numerical_features_names = x_stabilityN + X_strFN + X_evolFN
|
||||
|
||||
# separate ones for foldx?
|
||||
categorical_features_names = ['ss_class'
|
||||
, 'wt_prop_water'
|
||||
# , 'lineage_labels' # misleading if using merged_df3
|
||||
, 'mut_prop_water'
|
||||
, 'wt_prop_polarity'
|
||||
, 'mut_prop_polarity'
|
||||
, 'wt_calcprop'
|
||||
, 'mut_calcprop'
|
||||
, 'active_aa_pos']
|
||||
|
||||
numerical_features_df = my_df[numerical_features_names]
|
||||
numerical_features_df.shape
|
||||
|
||||
categorical_features_df = my_df[categorical_features_names]
|
||||
categorical_features_df.shape
|
||||
|
||||
all_features_df = my_df[numerical_features_names + categorical_features_names]
|
||||
all_features_df.shape
|
118
my_data8.py
Normal file
118
my_data8.py
Normal file
|
@ -0,0 +1,118 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Mar 5 12:57:32 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
# data, etc for now comes from my_data6.py and/or my_data5.py
|
||||
|
||||
#%% try combinations
|
||||
#import sys, os
|
||||
#os.system("imports.py")
|
||||
|
||||
|
||||
#%%
|
||||
seed = 42
|
||||
features_to_encode = list(X_train.select_dtypes(include = ['object']).columns)
|
||||
|
||||
col_trans = make_column_transformer(
|
||||
(OneHotEncoder(),features_to_encode),
|
||||
remainder = "passthrough"
|
||||
)
|
||||
|
||||
rf_classifier = RandomForestClassifier(
|
||||
min_samples_leaf=50,
|
||||
n_estimators=150,
|
||||
bootstrap=True,
|
||||
oob_score=True,
|
||||
n_jobs=-1,
|
||||
random_state=seed,
|
||||
max_features='auto')
|
||||
|
||||
pipe = make_pipeline(col_trans, rf_classifier)
|
||||
pipe.fit(X_train, y_train)
|
||||
y_pred = pipe.predict(X_test)
|
||||
#%%
|
||||
|
||||
all_features_df.shape
|
||||
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(all_features_df,
|
||||
target1,
|
||||
test_size = 0.33,
|
||||
random_state = 42)
|
||||
preprocessor = ColumnTransformer(
|
||||
transformers=[
|
||||
('num', MinMaxScaler() , numerical_features_df)
|
||||
,('cat', OneHotEncoder(), categorical_features_df)])
|
||||
|
||||
seed = 42
|
||||
rf_classifier = RandomForestClassifier(
|
||||
min_samples_leaf=50,
|
||||
n_estimators=150,
|
||||
bootstrap=True,
|
||||
oob_score=True,
|
||||
n_jobs=-1,
|
||||
random_state=seed,
|
||||
max_features='auto')
|
||||
|
||||
preprocessor.fit(all_features_df)
|
||||
preprocessor.transform(all_features_df)
|
||||
|
||||
model = Pipeline(steps = [
|
||||
('preprocess', preprocessor)
|
||||
,('regression',linear_model.LogisticRegression())
|
||||
])
|
||||
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
y_pred
|
||||
|
||||
|
||||
def precision(y_true,y_pred):
|
||||
return precision_score(y_true,y_pred,pos_label = 1)
|
||||
def recall(y_true,y_pred):
|
||||
return recall_score(y_true, y_pred, pos_label = 1)
|
||||
def f1(y_true,y_pred):
|
||||
return f1_score(y_true, y_pred, pos_label = 1)
|
||||
|
||||
acc = make_scorer(accuracy_score)
|
||||
prec = make_scorer(precision)
|
||||
rec = make_scorer(recall)
|
||||
f1 = make_scorer(f1)
|
||||
|
||||
output = cross_validate(model, X_train, y_train
|
||||
, scoring = {'acc' : acc
|
||||
,'prec': prec
|
||||
,'rec' : rec
|
||||
,'f1' : f1}
|
||||
, cv = 10
|
||||
, return_train_score = False)
|
||||
pd.DataFrame(output).mean()
|
||||
#%% with feature selection
|
||||
preprocessor.fit(numerical_features_df)
|
||||
preprocessor.transform(numerical_features_df)
|
||||
|
||||
model = Pipeline(steps = [
|
||||
('preprocess', preprocessor)
|
||||
,('regression',linear_model.LogisticRegression())
|
||||
])
|
||||
|
||||
|
||||
|
||||
selector_logistic = RFECV(estimator = model
|
||||
, cv = 10
|
||||
, step = 1)
|
||||
|
||||
X_trainN, X_testN, y_trainN, y_testN = train_test_split(numerical_features_df
|
||||
, target1
|
||||
, test_size = 0.33
|
||||
, random_state = 42)
|
||||
|
||||
selector_logistic_xtrain = selector_logistic.fit_transform(X_trainN, y_trainN)
|
||||
print(sel_rfe_logistic.get_support())
|
||||
X_trainN.columns
|
||||
|
||||
print(sel_rfe_logistic.ranking_)
|
Loading…
Add table
Add a link
Reference in a new issue