added and ran hyperparam script for all different classifiers, but couldn't successfully run the feature selection and hyperparam together

This commit is contained in:
Tanushree Tunstall 2022-05-20 08:09:24 +01:00
parent 74af5ef890
commit 37bda41f44
18 changed files with 131 additions and 142 deletions

View file

@ -33,12 +33,11 @@ class ClfSwitcher(BaseEstimator):
parameters = [
{
'clf__estimator': [MLPClassifier(**rs
, **njobs
, max_iter = 500)],
, 'clf__estimator__hidden_layer_sizes': [(1), (2), (3)]
, 'clf__estimator__max_features': ['auto', 'sqrt']
, 'clf__estimator__min_samples_leaf': [2, 4, 8]
, 'clf__estimator__min_samples_split': [10, 20]
, max_iter = 1000)]
, 'clf__estimator__hidden_layer_sizes': [(1), (2), (3), (5), (10)]
, 'clf__estimator__solver': ['lbfgs', 'sgd', 'adam']
, 'clf__estimator__learning_rate': ['constant', 'invscaling', 'adaptive']
#, 'clf__estimator__learning_rate': ['constant']
}
]
@ -68,7 +67,7 @@ gscv_mlp_fit_be_res = gscv_mlp_fit.cv_results_
print('Best model:\n', gscv_mlp_fit_be_mod)
print('Best models score:\n', gscv_mlp_fit.best_score_, ':' , round(gscv_mlp_fit.best_score_, 2))
print('\nMean test score from fit results:', round(mean(gscv_mlp_fit_be_re['mean_test_mcc']),2))
print('\nMean test score from fit results:', round(mean(gscv_mlp_fit_be_res['mean_test_mcc']),2))
print('\nMean test score from fit results:', round(np.nanmean(gscv_mlp_fit_be_res['mean_test_mcc']),2))
######################################
@ -106,17 +105,15 @@ mlp_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
mlp_bts_dict
# Create a df from dict with all scores
pd.DataFrame.from_dict(mlp_bts_dict, orient = 'index', columns = 'best_model')
mlp_bts_df = pd.DataFrame.from_dict(mlp_bts_dict,orient = 'index')
mlp_bts_df.columns = ['Logistic_Regression']
mlp_bts_df.columns = ['MLP']
print(mlp_bts_df)
# Create df with best model params
model_params = pd.Series(['best_model_params', list(gscv_mlp_fit_be_mod.items() )])
model_params_df = model_params.to_frame()
model_params_df
model_params_df.columns = ['Logistic_Regression']
model_params_df.columns = ['MLP']
model_params_df.columns
# Combine the df of scores and the best model params