added and ran hyperparam script for all different classifiers, but couldn't successfully run the feature selection and hyperparam together

This commit is contained in:
Tanushree Tunstall 2022-05-20 08:09:24 +01:00
parent 74af5ef890
commit 37bda41f44
18 changed files with 131 additions and 142 deletions

View file

@ -33,10 +33,10 @@ class ClfSwitcher(BaseEstimator):
parameters = [
{
'clf__estimator': [BernoulliNB()]
, 'clf__estimator__alpha': [0, 1]
, 'clf__estimator__binarize':['None', 0]
, 'clf__estimator__alpha': [1, 0]
, 'clf__estimator__binarize':[None, 0]
, 'clf__estimator__fit_prior': [True]
, 'clf__estimator__class_prior': ['None']
, 'clf__estimator__class_prior': [None]
}
]
@ -65,7 +65,7 @@ gscv_bnb_fit_be_res = gscv_bnb_fit.cv_results_
print('Best model:\n', gscv_bnb_fit_be_mod)
print('Best models score:\n', gscv_bnb_fit.best_score_, ':' , round(gscv_bnb_fit.best_score_, 2))
print('\nMean test score from fit results:', round(mean(gscv_bnb_fit_be_re['mean_test_mcc']),2))
print('\nMean test score from fit results:', round(mean(gscv_bnb_fit_be_res['mean_test_mcc']),2))
print('\nMean test score from fit results:', round(np.nanmean(gscv_bnb_fit_be_res['mean_test_mcc']),2))
######################################
@ -103,17 +103,15 @@ bnb_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
bnb_bts_dict
# Create a df from dict with all scores
pd.DataFrame.from_dict(bnb_bts_dict, orient = 'index', columns = 'best_model')
bnb_bts_df = pd.DataFrame.from_dict(bnb_bts_dict,orient = 'index')
bnb_bts_df.columns = ['Logistic_Regression']
bnb_bts_df.columns = ['BNB']
print(bnb_bts_df)
# Create df with best model params
model_params = pd.Series(['best_model_params', list(gscv_bnb_fit_be_mod.items() )])
model_params_df = model_params.to_frame()
model_params_df
model_params_df.columns = ['Logistic_Regression']
model_params_df.columns = ['BNB']
model_params_df.columns
# Combine the df of scores and the best model params