renamed UQ_LR_FS.py to UQ_LR_FS_p1.py
This commit is contained in:
parent
e16e82e673
commit
3742a5f62d
2 changed files with 17 additions and 14 deletions
301
UQ_LR_FS.py
301
UQ_LR_FS.py
|
@ -1,301 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon May 16 05:59:12 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 11:09:50 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%% Import libs
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn import datasets
|
||||
from sklearn.ensemble import ExtraTreesClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.ensemble import AdaBoostClassifier
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
from sklearn.svm import SVC
|
||||
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
from xgboost import XGBClassifier
|
||||
#####################
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.feature_selection import RFECV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.feature_selection import SelectFromModel
|
||||
from sklearn.feature_selection import SequentialFeatureSelector
|
||||
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
#%%
|
||||
|
||||
y.to_frame().value_counts().plot(kind = 'bar')
|
||||
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
|
||||
|
||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jaccard' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
#%% Logistic Regression + hyperparam + FS: BaseEstimator: ClfSwitcher()
|
||||
model_lr = LogisticRegression(**rs)
|
||||
model_rfecv = RFECV(estimator = model_lr
|
||||
, cv = rskf_cv
|
||||
#, cv = 10
|
||||
, scoring = 'matthews_corrcoef'
|
||||
)
|
||||
|
||||
# model_rfecv = SequentialFeatureSelector(estimator = model_lr
|
||||
# , n_features_to_select = 'auto'
|
||||
# , tol = None
|
||||
# # , cv = 10
|
||||
# , cv = rskf_cv
|
||||
# # , direction ='backward'
|
||||
# , direction ='forward'
|
||||
# , **njobs)
|
||||
|
||||
# param_grid = [
|
||||
# { 'C': np.logspace(0, 4, 10),
|
||||
# 'penalty': ['l1', 'l2'],
|
||||
# 'max_iter': [100],
|
||||
# 'solver': ['saga']
|
||||
# }#,
|
||||
# # { 'C': [1],
|
||||
# # 'penalty': ['l1'],
|
||||
# # 'max_iter': [100],
|
||||
# # 'solver': ['saga']
|
||||
# # }
|
||||
# ]
|
||||
|
||||
param_grid2 = [
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['none', 'l1', 'l2', 'elasticnet'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['saga']
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['l2', 'none'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['newton-cg', 'lbfgs', 'sag']
|
||||
},
|
||||
{
|
||||
#'clf__estimator': [LogisticRegression(**rs)],
|
||||
#'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
|
||||
'C': np.logspace(0, 4, 10),
|
||||
'penalty': ['l1', 'l2'],
|
||||
'max_iter': list(range(100,800,100)),
|
||||
'solver': ['liblinear']
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# Grid search CV + FS
|
||||
gscv_lr = GridSearchCV(model_lr
|
||||
, param_grid2
|
||||
, scoring = mcc_score_fn, refit = 'mcc'
|
||||
, cv = skf_cv
|
||||
, return_train_score = False
|
||||
, verbose = 3
|
||||
, **njobs)
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
# Create pipeline
|
||||
pipeline = Pipeline([('pre', MinMaxScaler())
|
||||
#, ('feature_selection', sfs_selector)
|
||||
, ('feature_selection', model_rfecv )
|
||||
, ('clf', gscv_lr)])
|
||||
|
||||
# Fit
|
||||
lr_fs = pipeline.fit(X,y)
|
||||
|
||||
pipeline.predict(X_bts)
|
||||
lr_fs.predict(X_bts)
|
||||
|
||||
test_predict = pipeline.predict(X_bts)
|
||||
print(test_predict)
|
||||
print(np.array(y_bts))
|
||||
#y_btsf = np.array(y_bts)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
###############################################################################
|
||||
#####################
|
||||
# Feature selection: AFTER model selection
|
||||
# https://towardsdatascience.com/5-feature-selection-method-from-scikit-learn-you-should-know-ed4d116e4172
|
||||
|
||||
###############################################################################
|
||||
|
||||
######################################
|
||||
# Blind test
|
||||
######################################
|
||||
# See how it does on the BLIND test
|
||||
#print('\nBlind test score, mcc:', ))
|
||||
|
||||
#test_predict = gscv_lr_fit.predict(X_bts)
|
||||
test_predict = pipeline.predict(X_bts)
|
||||
test_predict_fs = sfs_selector.predict(X_bts)
|
||||
|
||||
print(test_predict)
|
||||
|
||||
print(accuracy_score(y_bts, test_predict))
|
||||
print(matthews_corrcoef(y_bts, test_predict))
|
||||
|
||||
# create a dict with all scores
|
||||
lr_bts_dict = {#'best_model': list(gscv_lr_fit_be_mod.items())
|
||||
'bts_fscore':None
|
||||
, 'bts_mcc':None
|
||||
, 'bts_precision':None
|
||||
, 'bts_recall':None
|
||||
, 'bts_accuracy':None
|
||||
, 'bts_roc_auc':None
|
||||
, 'bts_jaccard':None }
|
||||
lr_bts_dict
|
||||
lr_bts_dict['bts_fscore'] = round(f1_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_mcc'] = round(matthews_corrcoef(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_precision'] = round(precision_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_recall'] = round(recall_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_accuracy'] = round(accuracy_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_roc_auc'] = round(roc_auc_score(y_bts, test_predict),2)
|
||||
lr_bts_dict['bts_jaccard'] = round(jaccard_score(y_bts, test_predict),2)
|
||||
lr_bts_dict
|
||||
|
||||
# Create a df from dict with all scores
|
||||
lr_bts_df = pd.DataFrame.from_dict(lr_bts_dict,orient = 'index')
|
||||
lr_bts_df.columns = ['Logistic_Regression']
|
||||
print(lr_bts_df)
|
||||
|
||||
# d2 = {'best_model_params': lis(gscv_lr_fit_be_mod.items() )}
|
||||
# d2
|
||||
# def Merge(dict1, dict2):
|
||||
# res = {**dict1, **dict2}
|
||||
# return res
|
||||
# d3 = Merge(d2, lr_bts_dict)
|
||||
# d3
|
||||
|
||||
# Create df with best model params
|
||||
model_params = pd.Series(['best_model_params', list(gscv_lr_fit_be_mod.items() )])
|
||||
model_params_df = model_params.to_frame()
|
||||
model_params_df
|
||||
model_params_df.columns = ['Logistic_Regression']
|
||||
model_params_df.columns
|
||||
|
||||
# Combine the df of scores and the best model params
|
||||
lr_bts_df.columns
|
||||
lr_output = pd.concat([model_params_df, lr_bts_df], axis = 0)
|
||||
lr_output
|
||||
|
||||
# Format the combined df
|
||||
# Drop the best_model_params row from lr_output
|
||||
lr_df = lr_output.drop([0], axis = 0)
|
||||
lr_df
|
||||
|
||||
#FIXME: tidy the index of the formatted df
|
||||
|
||||
###############################################################################
|
||||
# FIXME: confusion matrix
|
||||
|
||||
print(confusion_matrix(y_bts, test_predict))
|
||||
#%% Feature selection
|
||||
|
||||
#####################
|
||||
# Feature selection: AFTER model selection?
|
||||
# ADD that within the loop
|
||||
# https://towardsdatascience.com/5-feature-selection-method-from-scikit-learn-you-should-know-ed4d116e4172
|
||||
#####################
|
||||
from sklearn.feature_selection import RFE
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.feature_selection import SelectFromModel
|
||||
from sklearn.feature_selection import SequentialFeatureSelector
|
||||
|
||||
# RFE: ~ model coef or feature_importance
|
||||
rfe_selector = RFE(estimator = LogisticRegression(**rs
|
||||
, penalty='l1'
|
||||
, solver='saga'
|
||||
, max_iter = 100
|
||||
, C= 1.0)
|
||||
, n_features_to_select = None # median by default
|
||||
, step = 1)
|
||||
rfe_selector.fit(X, y)
|
||||
rfe_fs = X.columns[rfe_selector.get_support()]
|
||||
print('\nFeatures selected from Recursive Feature Elimination:', len(rfe_fs)
|
||||
, '\nThese are:', rfe_fs)
|
||||
|
||||
# SFM: ~ model coef or feature_importance
|
||||
sfm_selector = SelectFromModel(estimator = LogisticRegression(**rs
|
||||
, penalty='l1'
|
||||
, solver='saga'
|
||||
, max_iter = 100
|
||||
, C= 1.0)
|
||||
, threshold = "median"
|
||||
, max_features = None ) # median by default
|
||||
sfm_selector.fit(X, y)
|
||||
sfm_fs = X.columns[sfm_selector.get_support()]
|
||||
|
||||
print('\nFeatures selected from Select From Model:', len(sfm_fs)
|
||||
, '\nThese are:', sfm_fs)
|
||||
|
||||
# SFS:ML CV
|
||||
sfs_selector = SequentialFeatureSelector(estimator = LogisticRegression(**rs
|
||||
, penalty='l1'
|
||||
, solver='saga'
|
||||
, max_iter = 100
|
||||
, C = 1.0)
|
||||
, n_features_to_select = 'auto'
|
||||
, tol = None
|
||||
, cv = 10
|
||||
#, cv = skf_cv
|
||||
# , direction ='backward'
|
||||
, direction ='forward'
|
||||
|
||||
, **njobs)
|
||||
sfs_selector.fit(X, y)
|
||||
sfsb_fs = X.columns[sfs_selector.get_support()]
|
||||
|
||||
print('\nFeatures selected from Sequential Feature Selector (Greedy):', len(sfsb_fs)
|
||||
, '\nThese are:', sfsb_fs)
|
||||
|
||||
#Features selected from Sequential Feature Selector (Greedy, Backward): 7 [CV = SKF_CV]
|
||||
#These are: Index(['ligand_distance', 'duet_stability_change', 'ddg_foldx', 'deepddg',
|
||||
# 'contacts', 'rd_values', 'snap2_score']
|
||||
|
||||
#Features selected from Sequential Feature Selector (Greedy, Backward): 7 [CV=10]
|
||||
#These are: Index(['ligand_distance', 'deepddg', 'contacts', 'rsa', 'kd_values',
|
||||
# 'rd_values', 'maf']
|
||||
|
||||
#-----
|
||||
# Features selected from Sequential Feature Selector (Greedy, Forward): 6 [CV = SKF_CV]
|
||||
# These are: Index(['ligand_distance', 'ddg_dynamut2', 'rsa', 'kd_values', 'rd_values', 'maf']
|
||||
|
||||
# Features selected from Sequential Feature Selector (Greedy, Forward): 6 [CV = 10]
|
||||
#These are: Index(['duet_stability_change', 'deepddg', 'ddg_dynamut2', 'rsa', 'kd_values', 'maf']
|
||||
###############################################################################
|
||||
# IMP: nice eg of including it as part of pipeline
|
||||
# https://www.tomasbeuzen.com/post/scikit-learn-gridsearch-pipelines/
|
Loading…
Add table
Add a link
Reference in a new issue