tidy script to run my versions of multiple modles with blind tests and also with oversampled data

This commit is contained in:
Tanushree Tunstall 2022-05-28 09:41:30 +01:00
parent b6f0308e42
commit 2898686bf8
3 changed files with 433 additions and 0 deletions

130
MultModelsCl_CALL.py Normal file
View file

@ -0,0 +1,130 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 11:09:50 2022
@author: tanu
"""
#%% MultModelsCl: function call()
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE OS: Numerical only
# mm_skf_scoresD2 = MultModelsCl(input_df = X_sm
# , target = y_sm
# , var_type = 'numerical'
# , skf_cv = skf_cv)
# sm_all = pd.DataFrame(mm_skf_scoresD2)
# sm_all = sm_all.T
# sm_CT = sm_all.filter(like='test_', axis=1)
#sm_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# sm_BT = sm_all.filter(like='bts_', axis=1)
#sm_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE ENN: Over + Undersampling combined: Numerical ONLY
# mm_skf_scoresD5 = MultModelsCl(input_df = X_enn
# , target = y_enn
# , var_type = 'numerical'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# enn_all = pd.DataFrame(mm_skf_scoresD5)
# enn_all = enn_all.T
# enn_CT = enn_all.filter(like='test_', axis=1)
#enn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# enn_BT = enn_all.filter(like='bts_', axis=1)
#enn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8= MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = ros_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = ros_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%%
# mm_skf_scoresD6 = MultModelsCl(input_df = X_renn
# , target = y_renn
# , var_type = 'numerical'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# renn_all = pd.DataFrame(mm_skf_scoresD6)
# renn_all = renn_all.T
# renn_CT = renn_all.filter(like='test_', axis=1)
#renn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# renn_BT = renn_all.filter(like='bts_', axis=1)
# renn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)

268
UQ_MultModelsCl.py Normal file
View file

@ -0,0 +1,268 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 4 15:25:33 2022
@author: tanu
"""
#%%
import os, sys
import pandas as pd
import numpy as np
import pprint as pp
#from copy import deepcopy
from sklearn import linear_model
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.naive_bayes import BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.neural_network import MLPClassifier
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.compose import make_column_transformer
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score
from sklearn.metrics import make_scorer
from sklearn.metrics import classification_report
from sklearn.metrics import average_precision_score
from sklearn.model_selection import cross_validate
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.pipeline import Pipeline
from sklearn.pipeline import make_pipeline
from sklearn.feature_selection import RFE
from sklearn.feature_selection import RFECV
import itertools
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
print(np.__version__)
print(pd.__version__)
from statistics import mean, stdev, median, mode
from imblearn.over_sampling import RandomOverSampler
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_validate
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.ensemble import AdaBoostClassifier
from imblearn.combine import SMOTEENN
from imblearn.under_sampling import EditedNearestNeighbours
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import RidgeClassifier, SGDClassifier, PassiveAggressiveClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import SGDClassifier
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.utils import all_estimators
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
#%%
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
, 'fscore' : make_scorer(f1_score)
, 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score)
, 'accuracy' : make_scorer(accuracy_score)
, 'roc_auc' : make_scorer(roc_auc_score)
, 'jaccard' : make_scorer(jaccard_score)
})
#%%
# Multiple Classification - Model Pipeline
def MultModelsCl(input_df, target, skf_cv
, blind_test_input_df
, blind_test_target
, var_type = ['numerical', 'categorical','mixed']):
'''
@ param input_df: input features
@ type: df with input features WITHOUT the target variable
@param target: target (or output) feature
@type: df or np.array or Series
@param skv_cv: stratifiedK fold int or object to allow shuffle and random state to pass
@type: int or StratifiedKfold()
@var_type: numerical, categorical and mixed to determine what col_transform to apply (MinMaxScalar and/or one-ho t encoder)
@type: list
returns
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
'''
# determine categorical and numerical features
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
categorical_ix
# Determine preprocessing steps ~ var_type
if var_type == 'numerical':
t = [('num', MinMaxScaler(), numerical_ix)]
if var_type == 'categorical':
t = [('cat', OneHotEncoder(), categorical_ix)]
if var_type == 'mixed':
t = [('num', MinMaxScaler(), numerical_ix)
, ('cat', OneHotEncoder(), categorical_ix) ]
col_transform = ColumnTransformer(transformers = t
, remainder='passthrough')
#%% Specify multiple Classification models
lr = LogisticRegression(**rs)
lrcv = LogisticRegressionCV(**rs)
gnb = GaussianNB()
nb = BernoulliNB()
knn = KNeighborsClassifier()
svc = SVC(**rs)
mlp = MLPClassifier(max_iter = 500, **rs)
dt = DecisionTreeClassifier(**rs)
ets = ExtraTreesClassifier(**rs)
rf = RandomForestClassifier(**rs, n_estimators = 1000 )
rf2 = RandomForestClassifier(
min_samples_leaf = 5
, n_estimators = 1000
, bootstrap = True
, oob_score = True
, **njobs
, **rs
, max_features = 'auto')
xgb = XGBClassifier(**rs, verbosity = 0, use_label_encoder =False)
lda = LinearDiscriminantAnalysis()
mnb = MultinomialNB()
pa = PassiveAggressiveClassifier(**rs, **njobs)
sgd = SGDClassifier(**rs, **njobs)
abc = AdaBoostClassifier(**rs)
bc = BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True)
et = ExtraTreeClassifier(**rs)
gpc = GaussianProcessClassifier(**rs)
gbc = GradientBoostingClassifier(**rs)
qda = QuadraticDiscriminantAnalysis()
rc = RidgeClassifier(**rs)
rccv = RidgeClassifierCV(cv = 10)
models = [('Logistic Regression' , lr)
, ('Logistic RegressionCV' , lrcv)
, ('Gaussian NB' , gnb)
, ('Naive Bayes' , nb)
, ('K-Nearest Neighbors' , knn)
, ('SVM' , svc)
, ('MLP' , mlp)
, ('Decision Tree' , dt)
, ('Extra Trees' , ets)
, ('Extra Tree' , et)
, ('Random Forest' , rf)
, ('Random Forest2' , rf2)
, ('Naive Bayes' , nb)
, ('XGBoost' , xgb)
, ('LDA' , lda)
, ('Multinomial' , mnb)
, ('Passive Aggresive' , pa)
, ('Stochastic GDescent' , sgd)
, ('AdaBoost Classifier' , abc)
, ('Bagging Classifier' , bc)
, ('Gaussian Process' , gpc)
, ('Gradient Boosting' , gbc)
, ('QDA' , qda)
, ('Ridge Classifier' , rc)
, ('Ridge ClassifierCV' , rccv)
]
mm_skf_scoresD = {}
for model_name, model_fn in models:
print('\nModel_name:', model_name
, '\nModel func:' , model_fn
, '\nList of models:', models)
model_pipeline = Pipeline([
('prep' , col_transform)
, ('model' , model_fn)])
print('Running model pipeline:', model_pipeline)
skf_cv_mod = cross_validate(model_pipeline
, input_df
, target
, cv = skf_cv
, scoring = scoring_fn
, return_train_score = True)
mm_skf_scoresD[model_name] = {}
for key, value in skf_cv_mod.items():
print('\nkey:', key, '\nvalue:', value)
print('\nmean value:', mean(value))
mm_skf_scoresD[model_name][key] = round(mean(value),2)
#pp.pprint(mm_skf_scoresD)
#cvtrain_mcc = mm_skf_scoresD[model_name]['test_mcc']
#return(mm_skf_scoresD)
#%%
#=========================
# Blind test: BTS results
#=========================
# Build the final results with all scores for a feature selected model
#bts_predict = gscv_fs.predict(blind_test_input_df)
model_pipeline.fit(input_df, target)
bts_predict = model_pipeline.predict(blind_test_input_df)
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
print('\nMCC on Blind test:' , bts_mcc_score)
print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, bts_predict),2))
# Diff b/w train and bts test scores
#train_test_diff_MCC = cvtrain_mcc - bts_mcc_score
# print('\nDiff b/w train and blind test score (MCC):', train_test_diff)
# # create a dict with all scores
# lr_btsD = { 'model_name': model_name
# , 'bts_mcc':None
# , 'bts_fscore':None
# , 'bts_precision':None
# , 'bts_recall':None
# , 'bts_accuracy':None
# , 'bts_roc_auc':None
# , 'bts_jaccard':None}
mm_skf_scoresD[model_name]['bts_mcc'] = bts_mcc_score
mm_skf_scoresD[model_name]['bts_fscore'] = round(f1_score(blind_test_target, bts_predict),2)
mm_skf_scoresD[model_name]['bts_precision'] = round(precision_score(blind_test_target, bts_predict),2)
mm_skf_scoresD[model_name]['bts_recall'] = round(recall_score(blind_test_target, bts_predict),2)
mm_skf_scoresD[model_name]['bts_accuracy'] = round(accuracy_score(blind_test_target, bts_predict),2)
mm_skf_scoresD[model_name]['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
mm_skf_scoresD[model_name]['bts_jaccard'] = round(jaccard_score(blind_test_target, bts_predict),2)
#mm_skf_scoresD[model_name]['diff_mcc'] = train_test_diff_MCC
return(mm_skf_scoresD)

35
pnca_config.py Normal file
View file

@ -0,0 +1,35 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os, sys
def MyGlobalVars():
global gene
global drug
global homedir
gene = 'pncA'
drug = 'pyrazinamide'
homedir = os.path.expanduser("~")
MyGlobalVars()
os.chdir(homedir + "/git/ML_AI_training/")
# my function
from UQ_MultClassPipe4 import MultClassPipeSKFCV
from UQ_pnca_ML.py import *
#from scriptsfymcn import run_all_ML
# YC_resD2 = run_all_ML(input_pd=X, target_label=y, blind_test_input_df=X_bts, blind_test_target=y_bts, preprocess = True, var_type = 'mixed')
# CVResultsDF = YC_resD2['CrossValResultsDF']
# CVResultsDF.sort_values(by=['matthew'], ascending=False, inplace=True)
# BTSResultsDF = YC_resD2['BlindTestResultsDF']
# BTSResultsDF.sort_values(by=['matthew'], ascending=False, inplace=True)