tidy script to run my versions of multiple modles with blind tests and also with oversampled data

This commit is contained in:
Tanushree Tunstall 2022-05-28 09:41:30 +01:00
parent b6f0308e42
commit 2898686bf8
3 changed files with 433 additions and 0 deletions

130
MultModelsCl_CALL.py Normal file
View file

@ -0,0 +1,130 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 11:09:50 2022
@author: tanu
"""
#%% MultModelsCl: function call()
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE OS: Numerical only
# mm_skf_scoresD2 = MultModelsCl(input_df = X_sm
# , target = y_sm
# , var_type = 'numerical'
# , skf_cv = skf_cv)
# sm_all = pd.DataFrame(mm_skf_scoresD2)
# sm_all = sm_all.T
# sm_CT = sm_all.filter(like='test_', axis=1)
#sm_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# sm_BT = sm_all.filter(like='bts_', axis=1)
#sm_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE ENN: Over + Undersampling combined: Numerical ONLY
# mm_skf_scoresD5 = MultModelsCl(input_df = X_enn
# , target = y_enn
# , var_type = 'numerical'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# enn_all = pd.DataFrame(mm_skf_scoresD5)
# enn_all = enn_all.T
# enn_CT = enn_all.filter(like='test_', axis=1)
#enn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# enn_BT = enn_all.filter(like='bts_', axis=1)
#enn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8= MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = ros_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = ros_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
#%%
# mm_skf_scoresD6 = MultModelsCl(input_df = X_renn
# , target = y_renn
# , var_type = 'numerical'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# renn_all = pd.DataFrame(mm_skf_scoresD6)
# renn_all = renn_all.T
# renn_CT = renn_all.filter(like='test_', axis=1)
#renn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# renn_BT = renn_all.filter(like='bts_', axis=1)
# renn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)