tidy script to run my versions of multiple modles with blind tests and also with oversampled data
This commit is contained in:
parent
b6f0308e42
commit
2898686bf8
3 changed files with 433 additions and 0 deletions
130
MultModelsCl_CALL.py
Normal file
130
MultModelsCl_CALL.py
Normal file
|
@ -0,0 +1,130 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 11:09:50 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
|
||||
#%% MultModelsCl: function call()
|
||||
mm_skf_scoresD = MultModelsCl(input_df = X
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
|
||||
baseline_all = pd.DataFrame(mm_skf_scoresD)
|
||||
baseline_all = baseline_all.T
|
||||
#baseline_train = baseline_all.filter(like='train_', axis=1)
|
||||
baseline_CT = baseline_all.filter(like='test_', axis=1)
|
||||
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
baseline_BT = baseline_all.filter(like='bts_', axis=1)
|
||||
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
#%% SMOTE OS: Numerical only
|
||||
# mm_skf_scoresD2 = MultModelsCl(input_df = X_sm
|
||||
# , target = y_sm
|
||||
# , var_type = 'numerical'
|
||||
# , skf_cv = skf_cv)
|
||||
# sm_all = pd.DataFrame(mm_skf_scoresD2)
|
||||
# sm_all = sm_all.T
|
||||
|
||||
# sm_CT = sm_all.filter(like='test_', axis=1)
|
||||
#sm_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
# sm_BT = sm_all.filter(like='bts_', axis=1)
|
||||
#sm_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
|
||||
#%% SMOTE ENN: Over + Undersampling combined: Numerical ONLY
|
||||
# mm_skf_scoresD5 = MultModelsCl(input_df = X_enn
|
||||
# , target = y_enn
|
||||
# , var_type = 'numerical'
|
||||
# , skf_cv = skf_cv
|
||||
# , blind_test_input_df = X_bts
|
||||
# , blind_test_target = y_bts)
|
||||
# enn_all = pd.DataFrame(mm_skf_scoresD5)
|
||||
# enn_all = enn_all.T
|
||||
|
||||
# enn_CT = enn_all.filter(like='test_', axis=1)
|
||||
#enn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
# enn_BT = enn_all.filter(like='bts_', axis=1)
|
||||
#enn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
#%% SMOTE NC: Oversampling [Numerical + categorical]
|
||||
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
|
||||
, target = y_smnc
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
smnc_all = pd.DataFrame(mm_skf_scoresD7)
|
||||
smnc_all = smnc_all.T
|
||||
|
||||
smnc_CT = smnc_all.filter(like='test_', axis=1)
|
||||
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
smnc_BT = smnc_all.filter(like='bts_', axis=1)
|
||||
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
#%% ROS: Numerical + categorical
|
||||
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
|
||||
, target = y_ros
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
ros_all = pd.DataFrame(mm_skf_scoresD3)
|
||||
ros_all = ros_all.T
|
||||
|
||||
ros_CT = ros_all.filter(like='test_', axis=1)
|
||||
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
ros_BT = ros_all.filter(like='bts_', axis=1)
|
||||
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
#%% RUS: Numerical + categorical
|
||||
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
|
||||
, target = y_rus
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
rus_all = pd.DataFrame(mm_skf_scoresD4)
|
||||
rus_all = rus_all.T
|
||||
|
||||
rus_CT = rus_all.filter(like='test_', axis=1)
|
||||
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
rus_BT = rus_all.filter(like='bts_' , axis=1)
|
||||
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
#%% ROS + RUS Combined: Numerical + categorical
|
||||
mm_skf_scoresD8= MultModelsCl(input_df = X_rouC
|
||||
, target = y_rouC
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
rouC_all = pd.DataFrame(mm_skf_scoresD8)
|
||||
rouC_all = rouC_all.T
|
||||
|
||||
rouC_CT = ros_all.filter(like='test_', axis=1)
|
||||
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
rouC_BT = ros_all.filter(like='bts_', axis=1)
|
||||
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
#%%
|
||||
# mm_skf_scoresD6 = MultModelsCl(input_df = X_renn
|
||||
# , target = y_renn
|
||||
# , var_type = 'numerical'
|
||||
# , skf_cv = skf_cv
|
||||
# , blind_test_input_df = X_bts
|
||||
# , blind_test_target = y_bts)
|
||||
# renn_all = pd.DataFrame(mm_skf_scoresD6)
|
||||
# renn_all = renn_all.T
|
||||
|
||||
# renn_CT = renn_all.filter(like='test_', axis=1)
|
||||
#renn_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
# renn_BT = renn_all.filter(like='bts_', axis=1)
|
||||
# renn_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue