remove ClfSwitcher() from this lot
This commit is contained in:
parent
18d9b77aee
commit
1a1154b4f4
15 changed files with 0 additions and 419 deletions
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [AdaBoostClassifier(**rs)]
|
'clf__estimator': [AdaBoostClassifier(**rs)]
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [BaggingClassifier(**rs
|
'clf__estimator': [BaggingClassifier(**rs
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [BernoulliNB()]
|
'clf__estimator': [BernoulliNB()]
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [DecisionTreeClassifier(**rs)]
|
'clf__estimator': [DecisionTreeClassifier(**rs)]
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [GradientBoostingClassifier(**rs)]
|
'clf__estimator': [GradientBoostingClassifier(**rs)]
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [GaussianNB()]
|
'clf__estimator': [GaussianNB()]
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [GaussianProcessClassifier(**rs)]
|
'clf__estimator': [GaussianProcessClassifier(**rs)]
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [KNeighborsClassifier(**njobs)]
|
'clf__estimator': [KNeighborsClassifier(**njobs)]
|
||||||
|
|
|
@ -12,75 +12,6 @@ Created on Tue Mar 15 11:09:50 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% Import libs
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from sklearn.model_selection import GridSearchCV
|
|
||||||
from sklearn import datasets
|
|
||||||
from sklearn.ensemble import ExtraTreesClassifier
|
|
||||||
from sklearn.ensemble import RandomForestClassifier
|
|
||||||
from sklearn.ensemble import AdaBoostClassifier
|
|
||||||
from sklearn.ensemble import GradientBoostingClassifier
|
|
||||||
from sklearn.svm import SVC
|
|
||||||
|
|
||||||
from sklearn.base import BaseEstimator
|
|
||||||
from sklearn.naive_bayes import MultinomialNB
|
|
||||||
from sklearn.linear_model import SGDClassifier
|
|
||||||
from sklearn.pipeline import Pipeline
|
|
||||||
from sklearn.model_selection import GridSearchCV
|
|
||||||
from sklearn.linear_model import LogisticRegression
|
|
||||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
|
||||||
from xgboost import XGBClassifier
|
|
||||||
rs = {'random_state': 42}
|
|
||||||
njobs = {'n_jobs': 10}
|
|
||||||
#%% Get train-test split and scoring functions
|
|
||||||
# X_train, X_test, y_train, y_test = train_test_split(num_df_wtgt[numerical_FN]
|
|
||||||
# , num_df_wtgt['mutation_class']
|
|
||||||
# , test_size = 0.33
|
|
||||||
# , random_state = 2
|
|
||||||
# , shuffle = True
|
|
||||||
# , stratify = num_df_wtgt['mutation_class'])
|
|
||||||
|
|
||||||
y.to_frame().value_counts().plot(kind = 'bar')
|
|
||||||
blind_test_df['dst_mode'].to_frame().value_counts().plot(kind = 'bar')
|
|
||||||
|
|
||||||
scoring_fn = ({'accuracy' : make_scorer(accuracy_score)
|
|
||||||
, 'fscore' : make_scorer(f1_score)
|
|
||||||
, 'mcc' : make_scorer(matthews_corrcoef)
|
|
||||||
, 'precision' : make_scorer(precision_score)
|
|
||||||
, 'recall' : make_scorer(recall_score)
|
|
||||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
|
||||||
, 'jaccard' : make_scorer(jaccard_score)
|
|
||||||
})
|
|
||||||
|
|
||||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
|
||||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
|
||||||
|
|
||||||
#%% Logistic Regression + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [LogisticRegression(**rs)],
|
'clf__estimator': [LogisticRegression(**rs)],
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [MLPClassifier(**rs
|
'clf__estimator': [MLPClassifier(**rs
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [QuadraticDiscriminantAnalysis()]
|
'clf__estimator': [QuadraticDiscriminantAnalysis()]
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{'clf__estimator' : [RidgeClassifier(**rs)]
|
{'clf__estimator' : [RidgeClassifier(**rs)]
|
||||||
, 'clf__estimator__alpha': [0.1, 0.2, 0.5, 0.8, 1.0]
|
, 'clf__estimator__alpha': [0.1, 0.2, 0.5, 0.8, 1.0]
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [RandomForestClassifier(**rs
|
'clf__estimator': [RandomForestClassifier(**rs
|
||||||
|
|
|
@ -5,31 +5,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
#%% RandomForest + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [SVC(**rs)]
|
'clf__estimator': [SVC(**rs)]
|
||||||
|
|
|
@ -16,31 +16,6 @@ Created on Wed May 18 06:03:24 2022
|
||||||
# reg_lambda=1, scale_pos_weight=1, seed=None, silent=None,
|
# reg_lambda=1, scale_pos_weight=1, seed=None, silent=None,
|
||||||
# subsample=1, verbosity=1)
|
# subsample=1, verbosity=1)
|
||||||
|
|
||||||
#%% XGBoost + hyperparam: BaseEstimator: ClfSwitcher()
|
|
||||||
class ClfSwitcher(BaseEstimator):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
estimator = SGDClassifier(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
A Custom BaseEstimator that can switch between classifiers.
|
|
||||||
:param estimator: sklearn object - The classifier
|
|
||||||
"""
|
|
||||||
self.estimator = estimator
|
|
||||||
|
|
||||||
def fit(self, X, y=None, **kwargs):
|
|
||||||
self.estimator.fit(X, y)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X, y=None):
|
|
||||||
return self.estimator.predict(X)
|
|
||||||
|
|
||||||
def predict_proba(self, X):
|
|
||||||
return self.estimator.predict_proba(X)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
return self.estimator.score(X, y)
|
|
||||||
|
|
||||||
parameters = [
|
parameters = [
|
||||||
{
|
{
|
||||||
'clf__estimator': [XGBClassifier(**rs , **njobs, verbose = 3)]
|
'clf__estimator': [XGBClassifier(**rs , **njobs, verbose = 3)]
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue