added all classification algorithms params for gridsearch

This commit is contained in:
Tanushree Tunstall 2022-03-21 13:51:20 +00:00
parent d012542435
commit 0c4f1e1e5f
8 changed files with 503 additions and 110 deletions

View file

@ -40,7 +40,7 @@ njobs = {'n_jobs': 10}
# TODO: get accuracy and other scores through K-fold cv
# Multiple Classification - Model Pipeline
def MultClassPipeSKFLoop(input_df, target, skf_cv, var_type = ['numerical','categorical','mixed']):
def MultClassPipeSKFLoop(input_df, target, sel_cv, var_type = ['numerical','categorical','mixed']):
'''
@ param input_df: input features
@ -131,7 +131,7 @@ def MultClassPipeSKFLoop(input_df, target, skf_cv, var_type = ['numerical','cate
fold_dict.update({ model_name: {}})
#scores_df = pd.DataFrame()
for train_index, test_index in skf_cv.split(input_df, target):
for train_index, test_index in sel_cv.split(input_df, target):
x_train_fold, x_test_fold = input_df.iloc[train_index], input_df.iloc[test_index]
y_train_fold, y_test_fold = target.iloc[train_index], target.iloc[test_index]
#print("Fold: ", fold_no, len(train_index), len(test_index))