added all classification algorithms params for gridsearch
This commit is contained in:
parent
d012542435
commit
0c4f1e1e5f
8 changed files with 503 additions and 110 deletions
|
@ -37,7 +37,7 @@ class ClfSwitcher(BaseEstimator):
|
|||
#def recall_score(self, X, y):
|
||||
# return self.estimator.recall_score(X, y)
|
||||
#%% Custom GridSearch: IntraModel[orig]
|
||||
def grid_search2(input_df, target, skf_cv, var_type = ['numerical', 'categorical','mixed']) :
|
||||
def grid_search(input_df, target, sel_cv, var_type = ['numerical', 'categorical','mixed']) :
|
||||
|
||||
pipeline1 = Pipeline((
|
||||
('pre', MinMaxScaler())
|
||||
|
@ -73,7 +73,7 @@ def grid_search2(input_df, target, skf_cv, var_type = ['numerical', 'categorical
|
|||
for i in range(len(pars)):
|
||||
print('IIIII===>', i)
|
||||
gs = GridSearchCV(pips[i], pars[i]
|
||||
, cv = skf_cv
|
||||
, cv = sel_cv
|
||||
, **scoring_refit
|
||||
#, refit=False
|
||||
, **njobs
|
||||
|
@ -82,9 +82,21 @@ def grid_search2(input_df, target, skf_cv, var_type = ['numerical', 'categorical
|
|||
print ("finished Gridsearch")
|
||||
print ('\nBest model:', gs.best_params_)
|
||||
print ('\nBest score:', gs.best_score_)
|
||||
#%% Custom grid_search: Intra-Model [with return]
|
||||
# TODO: add
|
||||
# # summarize results
|
||||
# print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
|
||||
# means = grid_result.cv_results_['mean_test_score']
|
||||
# stds = grid_result.cv_results_['std_test_score']
|
||||
# params = grid_result.cv_results_['params']
|
||||
# for mean, stdev, param in zip(means, stds, params):
|
||||
# print("%f (%f) with: %r" % (mean, stdev, param))
|
||||
|
||||
# CALL: grid_search [orig]
|
||||
grid_search()
|
||||
|
||||
# #%% Custom grid_search: Intra-Model [with return]
|
||||
def grid_search(input_df, target
|
||||
, skf_cv
|
||||
, sel_cv
|
||||
, chosen_scoreD #scoring_refit
|
||||
#, var_type = ['numerical', 'categorical','mixed']
|
||||
):
|
||||
|
@ -128,7 +140,7 @@ def grid_search(input_df, target
|
|||
|
||||
print("\nStarting Gridsearch for model:", model_name, i)
|
||||
gs = GridSearchCV(all_pipelines[i], all_parameters[i]
|
||||
, cv = skf_cv
|
||||
, cv = sel_cv
|
||||
#, **scoring_refit
|
||||
#, refit=False
|
||||
, **chosen_scoreD
|
||||
|
@ -150,6 +162,9 @@ def grid_search(input_df, target
|
|||
out[model_name].update(chosen_scoreD.copy())
|
||||
out[model_name].update({'best_score': gs.best_score_}.copy())
|
||||
return(out)
|
||||
|
||||
# TODO:
|
||||
# print, or see for each model mean test score and sd, sometimes they can be identical and your best model just picks one!
|
||||
#%% call CUSTOM grid_search: INTRA model [with return]
|
||||
# call
|
||||
chosen_score = {'scoring': 'recall'
|
||||
|
@ -158,7 +173,6 @@ mcc_score_fn = {'chosen_scoreD': {'scoring': {'mcc': make_scorer(matthews_corrco
|
|||
,'refit': 'mcc'}
|
||||
}
|
||||
}
|
||||
|
||||
intra_models = grid_search(X, y
|
||||
, skf_cv = skf_cv
|
||||
, chosen_scoreD= chosen_score
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue