added my_data4 after outputting merged_df3 for pnca to test the ml models
This commit is contained in:
parent
25a55ac914
commit
04e0267dd1
11 changed files with 5918 additions and 377 deletions
293
my_datap4.py
Normal file
293
my_datap4.py
Normal file
|
@ -0,0 +1,293 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Feb 24 10:48:10 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
###############################################################################
|
||||
# questions:
|
||||
# which data to use: merged_df3 or merged_df2
|
||||
# which is the target? or_mychisq or drtype col
|
||||
# scaling: can it be from -1 to 1?
|
||||
# how to include the mutation information?
|
||||
# 'wild_type', 'mutant', 'postion'
|
||||
# whether to log transform the af and or cols
|
||||
# to allow mean mode values to be imputed for validation set
|
||||
# whether to calculate mean, median accounting for NA or removing them?
|
||||
|
||||
# strategy:
|
||||
# available data = X_train
|
||||
# available data but NAN = validation_test
|
||||
# test data: mut generated not in mcsm
|
||||
|
||||
###############################################################################
|
||||
import os, sys
|
||||
import re
|
||||
from sklearn.datasets import load_boston
|
||||
from sklearn import datasets
|
||||
from sklearn import linear_model
|
||||
from sklearn import preprocessing
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
from statistics import mean, stdev
|
||||
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import cross_validate
|
||||
from sklearn.metrics import make_scorer
|
||||
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.model_selection import StratifiedKFold
|
||||
|
||||
from sklearn.preprocessing import OneHotEncoder
|
||||
from sklearn.compose import make_column_transformer
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, roc_auc_score, roc_curve, f1_score
|
||||
from sklearn.metrics import plot_precision_recall_curve
|
||||
import itertools
|
||||
#%% read data
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir(homedir + "/git/ML_AI_training/test_data")
|
||||
|
||||
# this needs to be merged_df2 or merged_df3?
|
||||
#gene 'pncA'
|
||||
drug = 'pyrazinamide'
|
||||
|
||||
my_df = pd.read_csv("pnca_merged_df3.csv")
|
||||
|
||||
my_df.dtypes
|
||||
my_df_cols = my_df.columns
|
||||
|
||||
#%%
|
||||
# GET Y
|
||||
# Y = my_df.loc[:,drug] #has NA
|
||||
dm_om_map = {'DM': 1, 'OM': 0}
|
||||
my_df['resistance'] = my_df['mutation_info_labels'].map(dm_om_map)
|
||||
|
||||
# sanity check
|
||||
my_df['resistance'].value_counts()
|
||||
my_df['mutation_info_labels'].value_counts()
|
||||
|
||||
Y = my_df['resistance']
|
||||
|
||||
#%%
|
||||
# GET X
|
||||
cols = my_df.columns
|
||||
X = my_df[['ligand_distance', 'ligand_affinity_change', 'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2', 'consurf_score']]
|
||||
|
||||
#%%
|
||||
####################################
|
||||
# SIMPLEST case of train_test split
|
||||
# Random forest
|
||||
# one hot encoder
|
||||
# MinMaxScaler
|
||||
# https://towardsdatascience.com/my-random-forest-classifier-cheat-sheet-in-python-fedb84f8cf4f
|
||||
####################################
|
||||
seed = 50
|
||||
X_train, X_test, y_train, y_test = train_test_split(X,Y
|
||||
, test_size = 0.333
|
||||
, random_state = seed)
|
||||
|
||||
features_to_encode = list(X_train.select_dtypes(include = ['object']).columns)
|
||||
|
||||
col_trans = make_column_transformer(
|
||||
(OneHotEncoder(),features_to_encode),
|
||||
remainder = "passthrough"
|
||||
)
|
||||
MinMaxS = preprocessing.MinMaxScaler()
|
||||
standardS = preprocessing.StandardScaler()
|
||||
|
||||
rf_classifier = RandomForestClassifier(
|
||||
min_samples_leaf=50,
|
||||
n_estimators=150,
|
||||
bootstrap=True,
|
||||
oob_score=True,
|
||||
n_jobs=-1,
|
||||
random_state=seed,
|
||||
max_features='auto')
|
||||
|
||||
pipe = make_pipeline(col_trans
|
||||
#, MinMaxS
|
||||
#, standardS
|
||||
, rf_classifier)
|
||||
|
||||
pipe.fit(X_train, y_train)
|
||||
y_pred = pipe.predict(X_test)
|
||||
accuracy_score(y_test, y_pred)
|
||||
|
||||
print("\nModel evaluation:\n")
|
||||
print(f"Accuracy: {round(accuracy_score(y_test,y_pred),3)*100} %")
|
||||
print(f"Recall: {round(recall_score(y_test,y_pred),3)*100} %")
|
||||
print(f"Precision: {round(precision_score(y_test,y_pred),3)*100} %")
|
||||
print(f"F1-score: {round(f1_score(y_test,y_pred),3)*100} %")
|
||||
|
||||
recall_score(y_test, y_pred)
|
||||
precision_score(y_test, y_pred)
|
||||
f1_score(y_test, y_pred)
|
||||
roc_auc_score (y_test, y_pred) # not sure!
|
||||
roc_curve(y_test, y_pred) # not sure!
|
||||
|
||||
disp = plot_precision_recall_curve(pipe, X_test, y_test)
|
||||
|
||||
train_probs = pipe.predict_proba(X_train)[:,1]
|
||||
probs = pipe.predict_proba(X_test)[:, 1]
|
||||
train_predictions = pipe.predict(X_train)
|
||||
|
||||
print(f'Train ROC AUC Score: {roc_auc_score(y_train, train_probs)}')
|
||||
print(f'Test ROC AUC Score: {roc_auc_score(y_test, probs)}')
|
||||
|
||||
def evaluate_model(y_pred, probs,train_predictions, train_probs):
|
||||
baseline = {}
|
||||
baseline['recall']=recall_score(y_test,
|
||||
[1 for _ in range(len(y_test))])
|
||||
baseline['precision'] = precision_score(y_test,
|
||||
[1 for _ in range(len(y_test))])
|
||||
baseline['roc'] = 0.5
|
||||
results = {}
|
||||
results['recall'] = recall_score(y_test, y_pred)
|
||||
results['precision'] = precision_score(y_test, y_pred)
|
||||
results['roc'] = roc_auc_score(y_test, probs)
|
||||
train_results = {}
|
||||
train_results['recall'] = recall_score(y_train,
|
||||
train_predictions)
|
||||
train_results['precision'] = precision_score(y_train, train_predictions)
|
||||
train_results['roc'] = roc_auc_score(y_train, train_probs)
|
||||
# for metric in ['recall', 'precision', 'roc']:
|
||||
# print(f"Baseline: {round(baseline[metric], 2)}Test: {round(results[metric], 2)} Train: {round(train_results[metric], 2)}")
|
||||
|
||||
# Calculate false positive rates and true positive rates
|
||||
base_fpr, base_tpr, _ = roc_curve(y_test, [1 for _ in range(len(y_test))])
|
||||
model_fpr, model_tpr, _ = roc_curve(y_test, probs)
|
||||
plt.figure(figsize = (8, 6))
|
||||
plt.rcParams['font.size'] = 16
|
||||
# Plot both curves
|
||||
plt.plot(base_fpr, base_tpr, 'b', label = 'baseline')
|
||||
plt.plot(model_fpr, model_tpr, 'r', label = 'model')
|
||||
plt.legend(); plt.xlabel('False Positive Rate');
|
||||
plt.ylabel('True Positive Rate'); plt.title('ROC Curves');
|
||||
plt.show()
|
||||
|
||||
# Recall Baseline: 1.0 Test: 0.92 Train: 0.93
|
||||
# Precision Baseline: 0.48 Test: 0.9 Train: 0.91
|
||||
# Roc Baseline: 0.5 Test: 0.97 Train: 0.97
|
||||
|
||||
evaluate_model(y_pred,probs,train_predictions,train_probs)
|
||||
|
||||
def plot_confusion_matrix(cm, classes, normalize = False,
|
||||
title='Confusion matrix',
|
||||
cmap=plt.cm.Greens): # can change color
|
||||
plt.figure(figsize = (10, 10))
|
||||
plt.imshow(cm, interpolation='nearest', cmap=cmap)
|
||||
plt.title(title, size = 24)
|
||||
plt.colorbar(aspect=4)
|
||||
tick_marks = np.arange(len(classes))
|
||||
plt.xticks(tick_marks, classes, rotation=45, size = 14)
|
||||
plt.yticks(tick_marks, classes, size = 14)
|
||||
fmt = '.2f' if normalize else 'd'
|
||||
thresh = cm.max() / 2.
|
||||
# Label the plot
|
||||
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt),
|
||||
fontsize = 20,
|
||||
horizontalalignment="center",
|
||||
color="white" if cm[i, j] > thresh else "black")
|
||||
plt.grid(None)
|
||||
plt.tight_layout()
|
||||
plt.ylabel('True label', size = 18)
|
||||
plt.xlabel('Predicted label', size = 18)
|
||||
# Let's plot it out
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
plot_confusion_matrix(cm, classes = ['0 - Susceptible', '1 - Resistant'],
|
||||
title = 'R/S Confusion Matrix')
|
||||
|
||||
print(rf_classifier.feature_importances_)
|
||||
print(f" There are {len(rf_classifier.feature_importances_)} features in total")
|
||||
#%%
|
||||
####################################
|
||||
# Model 2: case of stratified K-fold
|
||||
# Random forest
|
||||
# MinMaxScaler
|
||||
# https://towardsdatascience.com/stratified-k-fold-what-it-is-how-to-use-it-cf3d107d3ea2
|
||||
####################################
|
||||
print('Class Ratio:',
|
||||
sum(Y)/len(Y))
|
||||
|
||||
print('Class Ratio:',
|
||||
sum(my_df['resistance'])/len(my_df['resistance'])
|
||||
)
|
||||
|
||||
seed_skf = 50
|
||||
skf = StratifiedKFold(n_splits = 10
|
||||
, shuffle = True
|
||||
, random_state = seed_skf)
|
||||
|
||||
target = my_df.loc[:,'resistance']
|
||||
|
||||
df = my_df[['ligand_distance'
|
||||
, 'ligand_affinity_change'
|
||||
, 'duet_stability_change'
|
||||
, 'ddg_foldx'
|
||||
, 'deepddg'
|
||||
, 'ddg_dynamut2'
|
||||
, 'consurf_score'
|
||||
, 'resistance']]
|
||||
# To start with we’ll just split our data and print the class ratio for
|
||||
# each fold to check that they are all close to the full data set.
|
||||
# Test set contains a single fold so we use the test split to determine the
|
||||
# class ratio for each fold. You can see that each fold’s class ratio is close
|
||||
# to the full data set which is obviously what we want
|
||||
|
||||
fold_no = 1 # to label the folds for printing output
|
||||
for train_index, test_index in skf.split(df, target):
|
||||
train = df.loc[train_index,:]
|
||||
test = df.loc[test_index,:]
|
||||
print('Fold',str(fold_no)
|
||||
, 'Class Ratio:'
|
||||
, sum(test['resistance'])/len(test['resistance']))
|
||||
fold_no += 1
|
||||
|
||||
model_logisP = Pipeline(steps = [('preprocess', preprocessing.MinMaxScaler())
|
||||
, ('logis', LogisticRegression(class_weight = 'balanced'))
|
||||
])
|
||||
model = LogisticRegression()
|
||||
# Next we’ll build a custom function that we can pass our data splits to for
|
||||
# training and testing.
|
||||
def train_model(train, test, fold_no):
|
||||
X = my_df[['ligand_distance'
|
||||
, 'ligand_affinity_change'
|
||||
, 'duet_stability_change'
|
||||
, 'ddg_foldx'
|
||||
, 'deepddg'
|
||||
, 'ddg_dynamut2'
|
||||
, 'consurf_score']]
|
||||
y = my_df.loc[:,'resistance']
|
||||
X_train = train[X]
|
||||
y_train = train[y]
|
||||
X_test = test[X]
|
||||
y_test = test[y]
|
||||
model.fit(X_train,y_train)
|
||||
predictions = model.predict(X_test)
|
||||
print('Fold',str(fold_no),
|
||||
'Accuracy:',
|
||||
accuracy_score(y_test,predictions))
|
||||
|
||||
# Finally, let’s modify the for loop we created above to call the build_model
|
||||
# function on each of our splits.
|
||||
|
||||
fold_no = 1
|
||||
for train_index, test_index in skf.split(df, target):
|
||||
train = df.loc[train_index,:]
|
||||
test = df.loc[test_index,:]
|
||||
train_model(train,test,fold_no)
|
||||
fold_no += 1
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue