LSHTM_analysis/scripts/ml/combined_model/cm_datai.py

136 lines
4.4 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 29 19:44:06 2022
@author: tanu
"""
import sys, os
import pandas as pd
import numpy as np
import re
from copy import deepcopy
from sklearn import linear_model
from sklearn import datasets
from collections import Counter
###############################################################################
homedir = os.path.expanduser("~")
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
sys.path
###############################################################################
outdir = homedir + '/git/LSHTM_ML/output/combined/'
#====================
# Import ML functions
#====================
from ml_data_combined import *
from MultClfs_logo_skf import *
#from GetMLData import *
#from SplitTTS import *
skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42)
#logo = LeaveOneGroupOut()
########################################################################
# COMPLETE data: No tts_split
########################################################################
#%%
def CMLogoData(cm_input_df = pd.DataFrame()
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
, bts_genes = ["embb", "katg"
, "rpob", "pnca", "gid"
]
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
, target_var = 'dst_mode'
, gene_group = 'gene_name'
, std_gene_omit = []
):
cm_dataD = {}
for bts_gene in bts_genes:
print('\n BTS gene:', bts_gene)
if not std_gene_omit:
training_genesL = ['alr']
else:
training_genesL = []
tr_gene_omit = std_gene_omit + [bts_gene]
n_tr_genes = (len(bts_genes) - (len(std_gene_omit)))
#n_total_genes = (len(bts_genes) - len(std_gene_omit))
n_total_genes = len(all_genes)
training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit))
#training_genesL = [element for element in bts_genes if element not in tr_gene_omit]
print('\nTotal genes: ', n_total_genes
,'\nTraining on:', n_tr_genes
,'\nTraining on genes:', training_genesL
, '\nOmitted genes:', tr_gene_omit
, '\nBlind test gene:', bts_gene)
tts_split_type = "logo_skf_BT_" + bts_gene
outFile = outdir + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
print(outFile)
bts_geneD = {}
#-------
# training
#------
cm_training_df = cm_input_df[~cm_input_df['gene_name'].isin(tr_gene_omit)]
cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False)
#cm_y = cm_training_df.loc[:,'dst_mode']
cm_y = cm_training_df.loc[:, target_var]
gene_group = cm_training_df.loc[:,'gene_name']
print('\nTraining data dim:', cm_X.shape
, '\nTraining Target dim:', cm_y.shape)
if all(cm_X.columns.isin(cols_to_drop) == False):
print('\nChecked training df does NOT have Target var')
else:
sys.exit('\nFAIL: training data contains Target var')
#---------------
# BTS: genes
#---------------
cm_test_df = cm_input_df[cm_input_df['gene_name'].isin([bts_gene])]
cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False)
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
cm_bts_y = cm_test_df.loc[:, target_var]
print('\nTEST data dim:', cm_bts_X.shape
, '\nTEST Target dim:', cm_bts_y.shape)
bts_geneD = {'cm_X' : cm_X
, 'cm_y' : cm_y
, 'cm_bts_X': cm_bts_X
, 'cm_bts_y': cm_bts_y}
cm_dataD[bts_gene] = bts_geneD
return(cm_dataD)
#%%
df_complete_6g = CMLogoData(cm_input_df = combined_df, std_gene_omit=[] )
df_complete_5g = CMLogoData(cm_input_df = combined_df, std_gene_omit=['alr'])
# checks
len(df_complete_6g['embb']['cm_X'])
#len(df_complete_6g['embb']['cm_y'])
len(df_complete_5g['embb']['cm_X'])
#len(df_complete_5g['embb']['cm_y'])
df_actual_6g = CMLogoData(cm_input_df = combined_df_actual, std_gene_omit=[] )
df_actual_5g = CMLogoData(cm_input_df = combined_df_actual, std_gene_omit=['alr'])
len(df_actual_6g['embb']['cm_X'])
len(df_actual_5g['embb']['cm_X'])