#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 29 19:44:06 2022 @author: tanu """ import sys, os import pandas as pd import numpy as np import re from copy import deepcopy from sklearn import linear_model from sklearn import datasets from collections import Counter ############################################################################### homedir = os.path.expanduser("~") sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions') sys.path ############################################################################### outdir = homedir + '/git/LSHTM_ML/output/combined/' #==================== # Import ML functions #==================== from ml_data_combined import * from MultClfs_logo_skf import * #from GetMLData import * #from SplitTTS import * skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42) #logo = LeaveOneGroupOut() ######################################################################## # COMPLETE data: No tts_split ######################################################################## #%% def CMLogoData(cm_input_df = pd.DataFrame() , all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"] , bts_genes = ["embb", "katg" , "rpob", "pnca", "gid" ] , cols_to_drop = ['dst', 'dst_mode', 'gene_name'] , target_var = 'dst_mode' , gene_group = 'gene_name' , std_gene_omit = [] ): cm_dataD = {} for bts_gene in bts_genes: print('\n BTS gene:', bts_gene) if not std_gene_omit: training_genesL = ['alr'] else: training_genesL = [] tr_gene_omit = std_gene_omit + [bts_gene] n_tr_genes = (len(bts_genes) - (len(std_gene_omit))) #n_total_genes = (len(bts_genes) - len(std_gene_omit)) n_total_genes = len(all_genes) training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit)) #training_genesL = [element for element in bts_genes if element not in tr_gene_omit] print('\nTotal genes: ', n_total_genes ,'\nTraining on:', n_tr_genes ,'\nTraining on genes:', training_genesL , '\nOmitted genes:', tr_gene_omit , '\nBlind test gene:', bts_gene) tts_split_type = "logo_skf_BT_" + bts_gene outFile = outdir + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv" print(outFile) bts_geneD = {} #------- # training #------ cm_training_df = cm_input_df[~cm_input_df['gene_name'].isin(tr_gene_omit)] cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False) #cm_y = cm_training_df.loc[:,'dst_mode'] cm_y = cm_training_df.loc[:, target_var] gene_group = cm_training_df.loc[:,'gene_name'] print('\nTraining data dim:', cm_X.shape , '\nTraining Target dim:', cm_y.shape) if all(cm_X.columns.isin(cols_to_drop) == False): print('\nChecked training df does NOT have Target var') else: sys.exit('\nFAIL: training data contains Target var') #--------------- # BTS: genes #--------------- cm_test_df = cm_input_df[cm_input_df['gene_name'].isin([bts_gene])] cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False) #cm_bts_y = cm_test_df.loc[:, 'dst_mode'] cm_bts_y = cm_test_df.loc[:, target_var] print('\nTEST data dim:', cm_bts_X.shape , '\nTEST Target dim:', cm_bts_y.shape) bts_geneD = {'cm_X' : cm_X , 'cm_y' : cm_y , 'cm_bts_X': cm_bts_X , 'cm_bts_y': cm_bts_y} cm_dataD[bts_gene] = bts_geneD return(cm_dataD) #%% df_complete_6g = CMLogoData(cm_input_df = combined_df, std_gene_omit=[] ) df_complete_5g = CMLogoData(cm_input_df = combined_df, std_gene_omit=['alr']) # checks len(df_complete_6g['embb']['cm_X']) #len(df_complete_6g['embb']['cm_y']) len(df_complete_5g['embb']['cm_X']) #len(df_complete_5g['embb']['cm_y']) df_actual_6g = CMLogoData(cm_input_df = combined_df_actual, std_gene_omit=[] ) df_actual_5g = CMLogoData(cm_input_df = combined_df_actual, std_gene_omit=['alr']) len(df_actual_6g['embb']['cm_X']) len(df_actual_5g['embb']['cm_X'])