113 lines
3.9 KiB
R
Executable file
113 lines
3.9 KiB
R
Executable file
#!/usr/bin/env Rscript
|
|
#########################################################
|
|
# TASK: formatting data that will be used for various plots
|
|
#########################################################
|
|
# load libraries and functions
|
|
library(data.table)
|
|
library(dplyr)
|
|
|
|
# ADDED: New
|
|
geneL_normal = c("pnca")
|
|
geneL_na = c("gid", "rpob")
|
|
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
|
|
|
|
if (tolower(gene)%in%geneL_na){
|
|
|
|
infilename_nca = paste0("/home/tanu/git/Misc/mcsm_na_dist/"
|
|
, tolower(gene), "_nca_distances.csv")
|
|
}
|
|
#========================================================
|
|
# plotting_data(): formatting data for plots
|
|
# input args:
|
|
## input csv file
|
|
## lig cut off dist, default = 10 Ang
|
|
# output: list of 4 dfs, that need to be decompressed
|
|
## my_df
|
|
## my_df_u
|
|
## my_df_u_lig
|
|
## dup_muts
|
|
#========================================================
|
|
#lig_dist_colname = 'ligand_distance' or global var LigDist_colname
|
|
#lig_dist_cutoff = 10 or global var LigDist_cutoff
|
|
|
|
plotting_data <- function(df
|
|
, gene # ADDED
|
|
, lig_dist_colname
|
|
, lig_dist_cutoff) {
|
|
my_df = data.frame()
|
|
my_df_u = data.frame()
|
|
my_df_u_lig = data.frame()
|
|
dup_muts = data.frame()
|
|
|
|
#===========================
|
|
# Read file: struct params
|
|
#===========================
|
|
#df = read.csv(infile_params, header = T)
|
|
|
|
cat("\nInput dimensions:", dim(df))
|
|
|
|
#==================================
|
|
# extract unique mutation entries
|
|
#==================================
|
|
|
|
# check for duplicate mutations
|
|
if ( length(unique(df$mutationinformation)) != length(df$mutationinformation)){
|
|
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
|
|
, "\nExtracting these...\n"))
|
|
#cat(my_df[duplicated(my_df$mutationinformation),])
|
|
dup_muts = df[duplicated(df$mutationinformation),]
|
|
dup_muts_nu = length(unique(dup_muts$mutationinformation))
|
|
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts)
|
|
, "\nNo. of unique duplicate mutations:", dup_muts_nu
|
|
, "\n\nExtracting df with unique mutations only\n"))
|
|
my_df_u = df[!duplicated(df$mutationinformation),]
|
|
}else{
|
|
cat(paste0("\nNo duplicate mutations detected\n"))
|
|
my_df_u = df
|
|
}
|
|
|
|
upos = unique(my_df_u$position)
|
|
cat("\nDim of clean df:"); cat(dim(my_df_u), "\n")
|
|
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
|
|
#===============================================
|
|
# ADD : na distance column for genes with nucleic acid affinity
|
|
#===============================================
|
|
#gid_na_distcol
|
|
if (tolower(gene)%in%geneL_na){
|
|
|
|
distcol_nca_name = read.csv(infilename_nca, header = F)
|
|
head(distcol_nca_name)
|
|
colnames(distcol_nca_name) <- c("mutationinformation", "nca_distance")
|
|
head(distcol_nca_name)
|
|
class(distcol_nca_name)
|
|
|
|
mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)]
|
|
mcol
|
|
head(my_df_u$mutationinformation)
|
|
head(distcol_nca_name$mutationinformation)
|
|
|
|
my_df_u = merge(my_df_u, distcol_nca_name,
|
|
by = "mutationinformation",
|
|
all = T)
|
|
|
|
}
|
|
#===============================================
|
|
# extract mutations <10 Angstroms and symbol
|
|
#===============================================
|
|
table(my_df_u[[lig_dist_colname]] < lig_dist_cutoff)
|
|
|
|
my_df_u_lig = my_df_u[my_df_u[[lig_dist_colname]] < lig_dist_cutoff,]
|
|
|
|
cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10\u212b of the ligand\n"))
|
|
|
|
# return list of DFs
|
|
my_df = df
|
|
#df_names = c("my_df", "my_df_u", "my_df_u_lig", "dup_muts")
|
|
all_df = list(my_df, my_df_u, my_df_u_lig, dup_muts)
|
|
#all_df = Map(setNames, all_df, df_names)
|
|
|
|
return(all_df)
|
|
}
|
|
########################################################################
|
|
# end of data extraction and cleaning for plots #
|
|
########################################################################
|