#!/usr/bin/env Rscript ######################################################### # TASK: formatting data that will be used for various plots ######################################################### # load libraries and functions library(data.table) library(dplyr) # ADDED: New geneL_normal = c("pnca") geneL_na = c("gid", "rpob") geneL_ppi2 = c("alr", "embb", "katg", "rpob") if (tolower(gene)%in%geneL_na){ infilename_nca = paste0("/home/tanu/git/Misc/mcsm_na_dist/" , tolower(gene), "_nca_distances.csv") } #======================================================== # plotting_data(): formatting data for plots # input args: ## input csv file ## lig cut off dist, default = 10 Ang # output: list of 4 dfs, that need to be decompressed ## my_df ## my_df_u ## my_df_u_lig ## dup_muts #======================================================== #lig_dist_colname = 'ligand_distance' or global var LigDist_colname #lig_dist_cutoff = 10 or global var LigDist_cutoff plotting_data <- function(df , gene # ADDED , lig_dist_colname , lig_dist_cutoff) { my_df = data.frame() my_df_u = data.frame() my_df_u_lig = data.frame() dup_muts = data.frame() #=========================== # Read file: struct params #=========================== #df = read.csv(infile_params, header = T) cat("\nInput dimensions:", dim(df)) #================================== # extract unique mutation entries #================================== # check for duplicate mutations if ( length(unique(df$mutationinformation)) != length(df$mutationinformation)){ cat(paste0("\nCAUTION:", " Duplicate mutations identified" , "\nExtracting these...\n")) #cat(my_df[duplicated(my_df$mutationinformation),]) dup_muts = df[duplicated(df$mutationinformation),] dup_muts_nu = length(unique(dup_muts$mutationinformation)) cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts) , "\nNo. of unique duplicate mutations:", dup_muts_nu , "\n\nExtracting df with unique mutations only\n")) my_df_u = df[!duplicated(df$mutationinformation),] }else{ cat(paste0("\nNo duplicate mutations detected\n")) my_df_u = df } upos = unique(my_df_u$position) cat("\nDim of clean df:"); cat(dim(my_df_u), "\n") cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n") #=============================================== # ADD : na distance column for genes with nucleic acid affinity #=============================================== #gid_na_distcol if (tolower(gene)%in%geneL_na){ distcol_nca_name = read.csv(infilename_nca, header = F) head(distcol_nca_name) colnames(distcol_nca_name) <- c("mutationinformation", "nca_distance") head(distcol_nca_name) class(distcol_nca_name) mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)] mcol head(my_df_u$mutationinformation) head(distcol_nca_name$mutationinformation) my_df_u = merge(my_df_u, distcol_nca_name, by = "mutationinformation", all = T) } #=============================================== # extract mutations <10 Angstroms and symbol #=============================================== table(my_df_u[[lig_dist_colname]] < lig_dist_cutoff) my_df_u_lig = my_df_u[my_df_u[[lig_dist_colname]] < lig_dist_cutoff,] cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10\u212b of the ligand\n")) # return list of DFs my_df = df #df_names = c("my_df", "my_df_u", "my_df_u_lig", "dup_muts") all_df = list(my_df, my_df_u, my_df_u_lig, dup_muts) #all_df = Map(setNames, all_df, df_names) return(all_df) } ######################################################################## # end of data extraction and cleaning for plots # ########################################################################