LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting/lineage_dist_PS.R
2020-01-08 16:15:33 +00:00

212 lines
5.8 KiB
R

getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting") # thinkpad
getwd()
########################################################################
# Installing and loading required packages #
########################################################################
source("../Header_TT.R")
#source("barplot_colour_function.R")
#require(data.table)
########################################################################
# Read file: call script for combining df for PS #
########################################################################
source("../combining_two_df.R")
#---------------------- PAY ATTENTION
# the above changes the working dir
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
#---------------------- PAY ATTENTION
#==========================
# This will return:
# df with NA:
# merged_df2
# merged_df3
# df without NA:
# merged_df2_comp
# merged_df3_comp
#===========================
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
###########################
# uncomment as necessary
#<<<<<<<<<<<<<<<<<<<<<<<<<
# REASSIGNMENT
my_df = merged_df2
#my_df = merged_df2_comp
#<<<<<<<<<<<<<<<<<<<<<<<<<
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
table(my_df$mutation_info)
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#==========================
# Plot: Lineage Distribution
# x = mcsm_values, y = dist
# fill = stability
#============================
#===================
# Data for plots
#===================
# subset only lineages1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
# uncomment as necessary
df_lin = subset(my_df, subset = lineage %in% sel_lineages )
# refactor
df_lin$lineage = factor(df_lin$lineage)
table(df_lin$lineage) #{RESULT: No of samples within lineage}
#lineage1 lineage2 lineage3 lineage4
#104 1293 264 1311
# when merged_df2_comp is used
#lineage1 lineage2 lineage3 lineage4
#99 1275 263 1255
length(unique(df_lin$Mutationinformation))
#{Result: No. of unique mutations the 4 lineages contribute to}
# sanity checks
r1 = 2:5 # when merged_df2 used: because there is missing lineages
if(sum(table(my_df$lineage)[r1]) == nrow(df_lin)) {
print ("sanity check passed: numbers match")
} else{
print("Error!: check your numbers")
}
#<<<<<<<<<<<<<<<<<<<<<<<<<
# REASSIGNMENT
df <- df_lin
#<<<<<<<<<<<<<<<<<<<<<<<<<
rm(df_lin)
#******************
# generate distribution plot of lineages
#******************
# basic: could improve this!
library(plotly)
library(ggridges)
g <- ggplot(df, aes(x = ratioDUET)) +
geom_density(aes(fill = DUET_outcome)
, alpha = 0.5) + facet_wrap(~ lineage,
scales = "free") +
ggtitle("Kernel Density estimates of Protein stability by lineage")
ggplotly(g)
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
fooNames=c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')
names(fooNames)=c('lineage1', 'lineage2', 'lineage3', 'lineage4')
# set output dir for plots
getwd()
setwd("~/git/Data/pyrazinamide/output/plots")
getwd()
svg('lineage_dist_PS.svg')
printFile = ggplot( df, aes(x = ratioDUET
, y = DUET_outcome) )+
#printFile=geom_density_ridges_gradient(
geom_density_ridges_gradient( aes(fill = ..x..)
, scale = 3
, size = 0.3 ) +
facet_wrap( ~lineage
, scales = "free"
# , switch = 'x'
, labeller = labeller(lineage = fooNames) ) +
coord_cartesian( xlim = c(-1, 1)
# , ylim = c(0, 6)
# , clip = "off"
) +
scale_fill_gradientn( colours = c("#f8766d", "white", "#00bfc4")
, name = "DUET" ) +
theme( axis.text.x = element_text( size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
# , axis.text.y = element_text( size = my_ats
# , angle = 0
# , hjust = 1
# , vjust = 0)
, axis.text.y = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size=my_als)
, legend.text = element_text(size=10)
, legend.title = element_text(size=my_als)
# , legend.position = c(0.3, 0.8)
# , legend.key.height = unit(1, 'mm')
)
print(printFile)
dev.off()
#=!=!=!=!=!=!
# COMMENT: When you look at all mutations, the lineage differences disappear...
# The pattern we are interested in is possibly only for dr_mutations
#=!=!=!=!=!=!
#===================================================
# COMPARING DISTRIBUTIONS
head(df$lineage)
df$lineage = as.character(df$lineage)
lin1 = df[df$lineage == "lineage1",]$ratioDUET
lin2 = df[df$lineage == "lineage2",]$ratioDUET
lin3 = df[df$lineage == "lineage3",]$ratioDUET
lin4 = df[df$lineage == "lineage4",]$ratioDUET
# ks test
ks.test(lin1,lin2)
ks.test(lin1,lin3)
ks.test(lin1,lin4)
ks.test(lin2,lin3)
ks.test(lin2,lin4)
ks.test(lin3,lin4)