LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/combining_two_df.R
2020-01-08 16:15:33 +00:00

299 lines
8.2 KiB
R

getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/")
getwd()
#########################################################
# TASK: To combine mcsm and meta data with af and or
#########################################################
########################################################################
# Installing and loading required packages #
########################################################################
source("Header_TT.R")
#require(data.table)
#require(arsenal)
#require(compare)
#library(tidyverse)
#################################
# Read file: normalised file
# output of step 4 mcsm_pipeline
#################################
inDir = "~/git/Data/pyrazinamide/input/processed/"
inFile = paste0(inDir, "mcsm_complex1_normalised.csv"); inFile
mcsm_data = read.csv(inFile
, row.names = 1
, stringsAsFactors = F
, header = T)
rm(inDir, inFile)
str(mcsm_data)
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
# spelling Correction 1: DUET
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Stabilizing'] <- 'Stabilising'
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Destabilizing'] <- 'Destabilising'
# checks: should be the same as above
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
head(mcsm_data$DUET_outcome); tail(mcsm_data$DUET_outcome)
# spelling Correction 2: Ligand
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Stabilizing'] <- 'Stabilising'
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Destabilizing'] <- 'Destabilising'
# checks: should be the same as above
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
head(mcsm_data$Lig_outcome); tail(mcsm_data$Lig_outcome)
# count na in each column
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
# sort by Mutationinformation
mcsm_data = mcsm_data[order(mcsm_data$Mutationinformation),]
head(mcsm_data$Mutationinformation)
# get freq count of positions and add to the df
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
###########################
# 2: Read file: meta data with AFandOR
###########################
inDir = "~/git/Data/pyrazinamide/input/processed/"
inFile2 = paste0(inDir, "meta_data_with_AFandOR.csv"); inFile2
meta_with_afor <- read.csv(inFile2
, stringsAsFactors = F
, header = T)
rm(inDir, inFile2)
str(meta_with_afor)
# sort by Mutationinformation
head(meta_with_afor$Mutationinformation)
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
head(meta_with_afor$Mutationinformation)
# sanity check: should be True for all the mentioned columns
#is.numeric(meta_with_afor$OR)
na_var = c("AF", "OR", "pvalue", "logor", "neglog10pvalue")
c1 = NULL
for (i in na_var){
print(i)
c0 = is.numeric(meta_with_afor[,i])
c1 = c(c0, c1)
if ( all(c1) ){
print("Sanity check passed: These are all numeric cols")
} else{
print("Error: Please check your respective data types")
}
}
# If OR, and P value are not numeric, then convert to numeric and then count
# else they will say 0
na_count = sapply(meta_with_afor, function(y) sum(length(which(is.na(y))))); na_count
str(na_count)
# compare if the No of "NA" are the same for all these cols
na_len = NULL
for (i in na_var){
temp = na_count[[i]]
na_len = c(na_len, temp)
}
# extract how many NAs:
# should be all TRUE
# should be a single number since
# all the cols should have "equal" and "same" no. of NAs
my_nrows = NULL
for ( i in 1: (length(na_len)-1) ){
#print(compare(na_len[i]), na_len[i+1])
c = compare(na_len[i], na_len[i+1])
if ( c$result ) {
my_nrows = na_len[i] }
else {
print("Error: Please check your numbers")
}
}
my_nrows
#=#=#=#=#=#=#=#=#
# COMMENT: AF, OR, pvalue, logor and neglog10pvalue
# these are the same 7 ones
#=#=#=#=#=#=#=#=#
# sanity check
#which(is.na(meta_with_afor$OR))
# initialise an empty df with nrows as extracted above
na_count_df = data.frame(matrix(vector(mode = 'numeric'
# , length = length(na_var)
)
, nrow = my_nrows
# , ncol = length(na_var)
))
# populate the df with the indices of the cols that are NA
for (i in na_var){
print(i)
na_i = which(is.na(meta_with_afor[i]))
na_count_df = cbind(na_count_df, na_i)
colnames(na_count_df)[which(na_var == i)] <- i
}
# Now compare these indices to ensure these are the same
c2 = NULL
for ( i in 1: ( length(na_count_df)-1 ) ) {
# print(na_count_df[i] == na_count_df[i+1])
c1 = identical(na_count_df[[i]], na_count_df[[i+1]])
c2 = c(c1, c2)
if ( all(c2) ) {
print("Sanity check passed: The indices for AF, OR, etc are all the same")
} else {
print ("Error: Please check indices which are NA")
}
}
rm( c, c0, c1, c2, i, my_nrows
, na_count, na_i, na_len
, na_var, temp
, na_count_df
, pos_count_check )
###########################
# 3:merging two dfs: with NA
###########################
# link col name = Mutationinforamtion
head(mcsm_data$Mutationinformation)
head(meta_with_afor$Mutationinformation)
#########
# merge 1a: meta data with mcsm
#########
merged_df2 = merge(x = meta_with_afor
,y = mcsm_data
, by = "Mutationinformation"
, all.y = T)
head(merged_df2$Position)
# sort by Position
head(merged_df2$Position)
merged_df2 = merged_df2[order(merged_df2$Position),]
head(merged_df2$Position)
merged_df2v2 = merge(x = meta_with_afor
,y = mcsm_data
, by = "Mutationinformation"
, all.x = T)
#!=!=!=!=!=!=!=!
# COMMENT: used all.y since position 186 is not part of the struc,
# hence doesn't have a mcsm value
# but 186 is associated with with mutation
#!=!=!=!=!=!=!=!
# should be False
identical(merged_df2, merged_df2v2)
table(merged_df2$Position%in%merged_df2v2$Position)
rm(merged_df2v2)
#########
# merge 1b:remove duplicate mutation information
#########
#==#=#=#=#=#=#
# Cannot trust lineage, country from this df as the same mutation
# can have many different lineages
# but this should be good for the numerical corr plots
#=#=#=#=#=#=#=
merged_df3 = merged_df2[!duplicated(merged_df2$Mutationinformation),]
head(merged_df3$Position); tail(merged_df3$Position) # should be sorted
# sanity checks
# nrows of merged_df3 should be the same as the nrows of mcsm_data
if(nrow(mcsm_data) == nrow(merged_df3)){
print("sanity check: Passed")
} else {
print("Error!: check data, nrows is not as expected")
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# uncomment as necessary
# only need to run this if merged_df2v2 i.e non structural pos included
#mcsm = mcsm_data$Mutationinformation
#my_merged = merged_df3$Mutationinformation
# find the index where it differs
#diff_n = which(!my_merged%in%mcsm)
#check if it is indeed pos 186
#merged_df3[diff_n,]
# remove this entry
#merged_df3 = merged_df3[-diff_n,]]
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
###########################
# 3b :merging two dfs: without NA
###########################
#########
# merge 2a:same as merge 1 but excluding NA
#########
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
#########
# merge 2b: remove duplicate mutation information
#########
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$Mutationinformation),]
# alternate way of deriving merged_df3_comp
foo = merged_df3[!is.na(merged_df3$AF),]
# compare dfs: foo and merged_df3_com
all.equal(foo, merged_df3)
summary(comparedf(foo, merged_df3))
#=============== end of combining df
#clear variables
rm(mcsm_data
, meta_with_afor
, foo)
#rm(diff_n, my_merged, mcsm)
#=====================
# write_output files
#=====================
# output dir
outDir = "~/git/Data/pyrazinamide/output/"
getwd()
outFile1 = paste0(outDir, "merged_df3.csv"); outFile1
write.csv(merged_df3, outFile1)
#outFile2 = paste0(outDir, "merged_df3_comp.csv"); outFile2
#write.csv(merged_df3_comp, outFile2)
rm(outDir
, outFile1
# , outFile2
)
#============================= end of script