240 lines
6.7 KiB
R
240 lines
6.7 KiB
R
getwd()
|
|
setwd('~/git/LSHTM_analysis/scripts/plotting')
|
|
getwd()
|
|
|
|
#########################################################
|
|
# TASK:
|
|
|
|
#########################################################
|
|
|
|
########################################################################
|
|
# Installing and loading required packages and functions #
|
|
########################################################################
|
|
|
|
#source('Header_TT.R')
|
|
#source('barplot_colour_function.R')
|
|
|
|
########################################################################
|
|
# Read file: call script for combining df for PS #
|
|
########################################################################
|
|
#?????????????
|
|
#
|
|
########################################################
|
|
#%% variable assignment: input and output paths & filenames
|
|
drug = 'pyrazinamide'
|
|
gene = 'pncA'
|
|
gene_match = paste0(gene,'_p.')
|
|
cat(gene_match)
|
|
|
|
#=============
|
|
# directories
|
|
#=============
|
|
datadir = paste0('~/git/Data')
|
|
indir = paste0(datadir, '/', drug, '/input')
|
|
outdir = paste0('~/git/Data', '/', drug, '/output')
|
|
|
|
#======
|
|
# input
|
|
#======
|
|
#in_filename = 'mcsm_complex1_normalised.csv'
|
|
in_filename_params = paste0(tolower(gene), '_all_params.csv')
|
|
infile_params = paste0(outdir, '/', in_filename_params)
|
|
cat(paste0('Input file:', infile_params) )
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
|
|
|
|
#%%===============================================================
|
|
###########################
|
|
# Read file: struct params
|
|
###########################
|
|
cat('Reading struct params including mcsm:', in_filename_params)
|
|
|
|
my_df = read.csv(infile_params
|
|
#, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
cat('Input dimensions:', dim(my_df))
|
|
|
|
# clear variables
|
|
rm(in_filename_params, infile_params)
|
|
|
|
# quick checks
|
|
colnames(my_df)
|
|
str(my_df)
|
|
|
|
# check for duplicate mutations
|
|
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
|
|
cat(paste0('CAUTION:', ' Duplicate mutations identified'
|
|
, '\nExtracting these...'))
|
|
dup_muts = my_df[duplicated(my_df$mutationinformation),]
|
|
dup_muts_nu = length(unique(dup_muts$mutationinformation))
|
|
cat(paste0('\nDim of duplicate mutation df:', nrow(dup_muts)
|
|
, '\nNo. of unique duplicate mutations:', dup_muts_nu
|
|
, '\n\nExtracting df with unique mutations only'))
|
|
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
|
|
}else{
|
|
cat(paste0('No duplicate mutations detected'))
|
|
my_df_u = my_df
|
|
}
|
|
|
|
upos = unique(my_df_u$position)
|
|
cat('Dim of clean df:'); cat(dim(my_df_u))
|
|
cat('\nNo. of unique mutational positions:'); cat(length(upos))
|
|
#======================================================
|
|
# create a new df with unique position numbers and cols
|
|
position = unique(my_df$position) #130
|
|
position_cols = as.data.frame(position)
|
|
|
|
head(position_cols) ; tail(position_cols)
|
|
|
|
# specify active site residues and bg colour
|
|
position = c(49, 51, 57, 71
|
|
, 8, 96, 138
|
|
, 13, 68
|
|
, 103, 137
|
|
, 133, 134) #13
|
|
|
|
lab_bg = rep(c("purple"
|
|
, "yellow"
|
|
, "cornflowerblue"
|
|
, "blue"
|
|
, "green"), times = c(4, 3, 2, 2, 2)
|
|
)
|
|
|
|
# second bg colour for active site residues
|
|
#lab_bg2 = rep(c("white"
|
|
# , "green" , "white", "green"
|
|
# , "white"
|
|
# , "white"
|
|
# , "white"), times = c(4
|
|
# , 1, 1, 1
|
|
# , 2
|
|
# , 2
|
|
# , 2)
|
|
#)
|
|
|
|
#%%%%%%%%%
|
|
# revised: leave the second box coloured as the first one incase there is no second colour
|
|
#%%%%%%%%%
|
|
lab_bg2 = rep(c("purple"
|
|
, "green", "yellow", "green"
|
|
, "cornflowerblue"
|
|
, "blue"
|
|
, "green"), times = c(4
|
|
, 1, 1, 1
|
|
, 2
|
|
, 2
|
|
, 2))
|
|
|
|
# fg colour for labels for active site residues
|
|
lab_fg = rep(c("white"
|
|
, "black"
|
|
, "black"
|
|
, "white"
|
|
, "black"), times = c(4, 3, 2, 2, 2))
|
|
|
|
#%%%%%%%%%
|
|
# revised: make the purple ones black
|
|
# fg colour for labels for active site residues
|
|
#%%%%%%%%%
|
|
#lab_fg = rep(c("black"
|
|
# , "black"
|
|
# , "black"
|
|
# , "white"
|
|
# , "black"), times = c(4, 3, 2, 2, 2))
|
|
|
|
# combined df with active sites, bg and fg colours
|
|
aa_cols_ref = data.frame(position
|
|
, lab_bg
|
|
, lab_bg2
|
|
, lab_fg
|
|
, stringsAsFactors = F) #13, 4
|
|
|
|
str(position_cols); class(position_cols)
|
|
str(aa_cols_ref); class(aa_cols_ref)
|
|
|
|
# since position is int and numeric in the two dfs resp,
|
|
# converting numeric to int for consistency
|
|
aa_cols_ref$position = as.integer(aa_cols_ref$position)
|
|
class(aa_cols_ref$position)
|
|
|
|
#===========
|
|
# Merge 1: merging positions df (position_cols) and
|
|
# active site cols (aa_cols_ref)
|
|
# linking column: "position"
|
|
# This is so you can have colours defined for all positions
|
|
#===========
|
|
head(position_cols$position); head(aa_cols_ref$position)
|
|
|
|
mut_pos_cols = merge(position_cols, aa_cols_ref
|
|
, by = "position"
|
|
, all.x = TRUE)
|
|
|
|
head(mut_pos_cols)
|
|
# replace NA's
|
|
# :column "lab_bg" with "white"
|
|
# : column "lab_fg" with "black"
|
|
mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white"
|
|
mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white"
|
|
mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black"
|
|
head(mut_pos_cols)
|
|
|
|
#===========
|
|
# Merge 2: Merge mut_pos_cols with mcsm df
|
|
# Now combined the positions with aa colours with
|
|
# the mcsm_data
|
|
#===========
|
|
# dfs to merge
|
|
df0 = my_df # my_df_o
|
|
df1 = mut_pos_cols
|
|
|
|
# check the column on which merge will be performed
|
|
head(df0$position); tail(df0$position)
|
|
head(df1$position); tail(df1$position)
|
|
|
|
# should now have 3 extra columns
|
|
my_df = merge(df0, df1
|
|
, by = "position"
|
|
, all.x = TRUE)
|
|
|
|
# sanity check
|
|
my_df[my_df$position == "49",]
|
|
my_df[my_df$position == "13",]
|
|
|
|
rm(df0, df1)
|
|
#===========
|
|
# Merge 3: Merge mut_pos_cols with mcsm df_u
|
|
# Now combined the positions with aa colours with
|
|
# the mcsm_data
|
|
#===========
|
|
# dfs to merge
|
|
df0 = my_df_u # my_df_u
|
|
df1 = mut_pos_cols
|
|
|
|
# check the column on which merge will be performed
|
|
head(df0$position); tail(df0$position)
|
|
head(df1$position); tail(df1$position)
|
|
|
|
# should now have 3 extra columns
|
|
my_df_u = merge(df0, df1
|
|
, by = "position"
|
|
, all.x = TRUE)
|
|
|
|
# sanity check
|
|
my_df[my_df$position == "49",]
|
|
my_df[my_df$position == "13",]
|
|
|
|
# clear variables
|
|
rm(aa_cols_ref
|
|
, df0
|
|
, df1
|
|
, position_cols
|
|
, lab_bg
|
|
, lab_bg2
|
|
, lab_fg
|
|
, position
|
|
, dup_muts)
|
|
|