getwd() setwd('~/git/LSHTM_analysis/scripts/plotting') getwd() ######################################################### # TASK: ######################################################### ######################################################################## # Installing and loading required packages and functions # ######################################################################## #source('Header_TT.R') #source('barplot_colour_function.R') ######################################################################## # Read file: call script for combining df for PS # ######################################################################## #????????????? # ######################################################## #%% variable assignment: input and output paths & filenames drug = 'pyrazinamide' gene = 'pncA' gene_match = paste0(gene,'_p.') cat(gene_match) #============= # directories #============= datadir = paste0('~/git/Data') indir = paste0(datadir, '/', drug, '/input') outdir = paste0('~/git/Data', '/', drug, '/output') #====== # input #====== #in_filename = 'mcsm_complex1_normalised.csv' in_filename_params = paste0(tolower(gene), '_all_params.csv') infile_params = paste0(outdir, '/', in_filename_params) cat(paste0('Input file:', infile_params) ) #======= # output #======= #%%=============================================================== ########################### # Read file: struct params ########################### cat('Reading struct params including mcsm:', in_filename_params) my_df = read.csv(infile_params #, stringsAsFactors = F , header = T) cat('Input dimensions:', dim(my_df)) # clear variables rm(in_filename_params, infile_params) # quick checks colnames(my_df) str(my_df) # check for duplicate mutations if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){ cat(paste0('CAUTION:', ' Duplicate mutations identified' , '\nExtracting these...')) dup_muts = my_df[duplicated(my_df$mutationinformation),] dup_muts_nu = length(unique(dup_muts$mutationinformation)) cat(paste0('\nDim of duplicate mutation df:', nrow(dup_muts) , '\nNo. of unique duplicate mutations:', dup_muts_nu , '\n\nExtracting df with unique mutations only')) my_df_u = my_df[!duplicated(my_df$mutationinformation),] }else{ cat(paste0('No duplicate mutations detected')) my_df_u = my_df } upos = unique(my_df_u$position) cat('Dim of clean df:'); cat(dim(my_df_u)) cat('\nNo. of unique mutational positions:'); cat(length(upos)) #====================================================== # create a new df with unique position numbers and cols position = unique(my_df$position) #130 position_cols = as.data.frame(position) head(position_cols) ; tail(position_cols) # specify active site residues and bg colour position = c(49, 51, 57, 71 , 8, 96, 138 , 13, 68 , 103, 137 , 133, 134) #13 lab_bg = rep(c("purple" , "yellow" , "cornflowerblue" , "blue" , "green"), times = c(4, 3, 2, 2, 2) ) # second bg colour for active site residues #lab_bg2 = rep(c("white" # , "green" , "white", "green" # , "white" # , "white" # , "white"), times = c(4 # , 1, 1, 1 # , 2 # , 2 # , 2) #) #%%%%%%%%% # revised: leave the second box coloured as the first one incase there is no second colour #%%%%%%%%% lab_bg2 = rep(c("purple" , "green", "yellow", "green" , "cornflowerblue" , "blue" , "green"), times = c(4 , 1, 1, 1 , 2 , 2 , 2)) # fg colour for labels for active site residues lab_fg = rep(c("white" , "black" , "black" , "white" , "black"), times = c(4, 3, 2, 2, 2)) #%%%%%%%%% # revised: make the purple ones black # fg colour for labels for active site residues #%%%%%%%%% #lab_fg = rep(c("black" # , "black" # , "black" # , "white" # , "black"), times = c(4, 3, 2, 2, 2)) # combined df with active sites, bg and fg colours aa_cols_ref = data.frame(position , lab_bg , lab_bg2 , lab_fg , stringsAsFactors = F) #13, 4 str(position_cols); class(position_cols) str(aa_cols_ref); class(aa_cols_ref) # since position is int and numeric in the two dfs resp, # converting numeric to int for consistency aa_cols_ref$position = as.integer(aa_cols_ref$position) class(aa_cols_ref$position) #=========== # Merge 1: merging positions df (position_cols) and # active site cols (aa_cols_ref) # linking column: "position" # This is so you can have colours defined for all positions #=========== head(position_cols$position); head(aa_cols_ref$position) mut_pos_cols = merge(position_cols, aa_cols_ref , by = "position" , all.x = TRUE) head(mut_pos_cols) # replace NA's # :column "lab_bg" with "white" # : column "lab_fg" with "black" mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white" mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white" mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black" head(mut_pos_cols) #=========== # Merge 2: Merge mut_pos_cols with mcsm df # Now combined the positions with aa colours with # the mcsm_data #=========== # dfs to merge df0 = my_df # my_df_o df1 = mut_pos_cols # check the column on which merge will be performed head(df0$position); tail(df0$position) head(df1$position); tail(df1$position) # should now have 3 extra columns my_df = merge(df0, df1 , by = "position" , all.x = TRUE) # sanity check my_df[my_df$position == "49",] my_df[my_df$position == "13",] rm(df0, df1) #=========== # Merge 3: Merge mut_pos_cols with mcsm df_u # Now combined the positions with aa colours with # the mcsm_data #=========== # dfs to merge df0 = my_df_u # my_df_u df1 = mut_pos_cols # check the column on which merge will be performed head(df0$position); tail(df0$position) head(df1$position); tail(df1$position) # should now have 3 extra columns my_df_u = merge(df0, df1 , by = "position" , all.x = TRUE) # sanity check my_df[my_df$position == "49",] my_df[my_df$position == "13",] # clear variables rm(aa_cols_ref , df0 , df1 , position_cols , lab_bg , lab_bg2 , lab_fg , position , dup_muts)