LSHTM_analysis/scripts/plotting/mcsm_mean_affinity_ensemble.R
2022-08-01 14:09:46 +01:00

244 lines
9.4 KiB
R

#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/alr.R")
#source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
source("~/git/LSHTM_analysis/config/rpob.R")
source("/home/tanu/git/LSHTM_analysis/my_header.R")
#########################################################
# TASK: Generate averaged affinity values
# across all affinity tools for a given structure
# as applicable...
#########################################################
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#OutFile1
outfile_mean_aff = paste0(outdir_images, "/", tolower(gene)
, "_mean_affinity_all.csv")
print(paste0("Output file:", outfile_mean_aff))
#OutFile2
outfile_mean_aff_priorty = paste0(outdir_images, "/", tolower(gene)
, "_mean_affinity_priority.csv")
print(paste0("Output file:", outfile_mean_aff_priorty))
#%%===============================================================
#=============
# Input
#=============
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
df3 = read.csv(df3_filename)
length(df3$mutationinformation)
# mut_info checks
table(df3$mutation_info)
table(df3$mutation_info_orig)
table(df3$mutation_info_labels_orig)
# used in plots and analyses
table(df3$mutation_info_labels) # different, and matches dst_mode
table(df3$dst_mode)
# create column based on dst mode with different colname
table(is.na(df3$dst))
table(is.na(df3$dst_mode))
#===============
# Create column: sensitivity mapped to dst_mode
#===============
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
table(df3$sensitivity)
length(unique((df3$mutationinformation)))
all_colnames = as.data.frame(colnames(df3))
common_cols = c("mutationinformation"
, "position"
, "dst_mode"
, "mutation_info_labels"
, "sensitivity"
, "ligand_distance")
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
#===================
# stability cols
#===================
raw_cols_stability = c("duet_stability_change"
, "deepddg"
, "ddg_dynamut2"
, "ddg_foldx")
scaled_cols_stability = c("duet_scaled"
, "deepddg_scaled"
, "ddg_dynamut2_scaled"
, "foldx_scaled")
outcome_cols_stability = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome")
#===================
# affinity cols
#===================
raw_cols_affinity = c("ligand_affinity_change"
, "mmcsm_lig"
, "mcsm_ppi2_affinity"
, "mcsm_na_affinity")
scaled_cols_affinity = c("affinity_scaled"
, "mmcsm_lig_scaled"
, "mcsm_ppi2_scaled"
, "mcsm_na_scaled" )
outcome_cols_affinity = c( "ligand_outcome"
, "mmcsm_lig_outcome"
, "mcsm_ppi2_outcome"
, "mcsm_na_outcome")
#===================
# conservation cols
#===================
# raw_cols_conservation = c("consurf_score"
# , "snap2_score"
# , "provean_score")
#
# scaled_cols_conservation = c("consurf_scaled"
# , "snap2_scaled"
# , "provean_scaled")
#
# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether
# outcome_cols_conservation = c("provean_outcome"
# , "snap2_outcome"
# #consurf outcome doesn't exist
# )
######################################################################
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
, raw_cols
, scaled_cols
, outcome_cols_affinity)]
# cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
# , outcome_cols_affinity)]
##############################################################
#####################
# Ensemble affinity: affinity_cols
#####################
# extract outcome cols and map numeric values to the categories
# Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising
# df3_plot = df3[, cols_to_extract]
#
# df3_plot[, outcome_cols_affinity] <- sapply(df3_plot[, outcome_cols_affinity]
# , function(x){ifelse(x == "Destabilising", 0, 1)})
df3_plot = df3[, c(common_cols, scaled_cols)]
#=====================================
# Affintiy (2 cols): average the scores
# across predictors ==> average by
# position ==> scale b/w -1 and 1
# column to average: ens_affinity
#=====================================
cols_to_average_affinity = which(colnames(df3_plot)%in%outcome_cols_affinity)
cols_to_average_affinity
# ensemble average across predictors
df3_plot_affinity$ens_affinity = rowMeans(df3_plot_affinity[,cols_to_average_affinity])
head(df3_plot_affinity$position); head(df3_plot_affinity$mutationinformation)
head(df3_plot_affinity$ens_affinity)
table(df3_plot_affinity$ens_affinity)
# ensemble average of predictors by position
mean_ens_affinity_by_position <- df3_plot_affinity %>%
dplyr::group_by(position) %>%
dplyr::summarize(avg_ens_affinity = mean(ens_affinity))
# REscale b/w -1 and 1
#en_aff_min = min(mean_ens_affinity_by_position['ens_affinity'])
#en_aff_max = max(mean_ens_affinity_by_position['ens_affinity'])
# scale the average affintiy value between -1 and 1
# mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity']
# , function(x) ifelse(x < 0, x/abs(en_aff_min), x/en_aff_max))
mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity']
, function(x) {
scales::rescale(x, to = c(-1,1)
#, from = c(en_aff_min,en_aff_max))
, from = c(0,1))
})
cat(paste0('Average affintiy scores:\n'
, head(mean_ens_affinity_by_position['avg_ens_affinity'])
, '\n---------------------------------------------------------------'
, '\nAverage affintiy scaled scores:\n'
, head(mean_ens_affinity_by_position['avg_ens_affinity_scaled'])))
#convert to a df
mean_ens_affinity_by_position = as.data.frame(mean_ens_affinity_by_position)
#FIXME: sanity checks
# TODO: predetermine the bounds
# l_bound_ens_aff = min(mean_ens_affintiy_by_position['avg_ens_affinity_scaled'])
# u_bound_ens_aff = max(mean_ens_affintiy_by_position['avg_ens_affinity_scaled'])
#
# if ( (l_bound_ens_aff == -1) && (u_bound_ens_aff == 1) ){
# cat(paste0("PASS: ensemble affinity scores averaged by position and then scaled"
# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff
# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff))
# }else{
# cat(paste0("FAIL: ensemble affinity scores could not be scaled b/w -1 and 1"
# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff
# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff))
# quit()
# }
######################################################################
##################
# merge: mean ensemble stability and affinity by_position
####################
# if ( class(mean_ens_stability_by_position) && class(mean_ens_affinity_by_position) != "data.frame"){
# cat("Y")
# }
common_cols = intersect(colnames(mean_ens_stability_by_position), colnames(mean_ens_affinity_by_position))
if (dim(mean_ens_stability_by_position) && dim(mean_ens_affinity_by_position)){
print(paste0("PASS: dim's match, mering dfs by column :", common_cols))
#combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position ))
combined_df = as.data.frame(merge(mean_ens_stability_by_position
, mean_ens_affinity_by_position
, by = common_cols
, all = T))
cat(paste0("\nnrows combined_df:", nrow(combined_df)
, "\nnrows combined_df:", ncol(combined_df)))
}else{
cat(paste0("FAIL: dim's mismatch, aborting cbind!"
, "\nnrows df1:", nrow(mean_duet_by_position)
, "\nnrows df2:", nrow(mean_affinity_by_position)))
quit()
}
#%%============================================================
# output
write.csv(combined_df, outfile_mean_ens_st_aff
, row.names = F)
cat("Finished writing file:\n"
, outfile_mean_ens_st_aff
, "\nNo. of rows:", nrow(combined_df)
, "\nNo. of cols:", ncol(combined_df))
# end of script
#===============================================================