#source("~/git/LSHTM_analysis/config/pnca.R") #source("~/git/LSHTM_analysis/config/alr.R") #source("~/git/LSHTM_analysis/config/gid.R") #source("~/git/LSHTM_analysis/config/embb.R") #source("~/git/LSHTM_analysis/config/katg.R") source("~/git/LSHTM_analysis/config/rpob.R") source("/home/tanu/git/LSHTM_analysis/my_header.R") ######################################################### # TASK: Generate averaged affinity values # across all affinity tools for a given structure # as applicable... ######################################################### #======= # output #======= outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene)) #OutFile1 outfile_mean_aff = paste0(outdir_images, "/", tolower(gene) , "_mean_affinity_all.csv") print(paste0("Output file:", outfile_mean_aff)) #OutFile2 outfile_mean_aff_priorty = paste0(outdir_images, "/", tolower(gene) , "_mean_affinity_priority.csv") print(paste0("Output file:", outfile_mean_aff_priorty)) #%%=============================================================== #============= # Input #============= df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv") df3 = read.csv(df3_filename) length(df3$mutationinformation) # mut_info checks table(df3$mutation_info) table(df3$mutation_info_orig) table(df3$mutation_info_labels_orig) # used in plots and analyses table(df3$mutation_info_labels) # different, and matches dst_mode table(df3$dst_mode) # create column based on dst mode with different colname table(is.na(df3$dst)) table(is.na(df3$dst_mode)) #=============== # Create column: sensitivity mapped to dst_mode #=============== df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S") table(df3$sensitivity) length(unique((df3$mutationinformation))) all_colnames = as.data.frame(colnames(df3)) common_cols = c("mutationinformation" , "position" , "dst_mode" , "mutation_info_labels" , "sensitivity" , "ligand_distance") all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)] all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)] #=================== # stability cols #=================== raw_cols_stability = c("duet_stability_change" , "deepddg" , "ddg_dynamut2" , "ddg_foldx") scaled_cols_stability = c("duet_scaled" , "deepddg_scaled" , "ddg_dynamut2_scaled" , "foldx_scaled") outcome_cols_stability = c("duet_outcome" , "deepddg_outcome" , "ddg_dynamut2_outcome" , "foldx_outcome") #=================== # affinity cols #=================== raw_cols_affinity = c("ligand_affinity_change" , "mmcsm_lig" , "mcsm_ppi2_affinity" , "mcsm_na_affinity") scaled_cols_affinity = c("affinity_scaled" , "mmcsm_lig_scaled" , "mcsm_ppi2_scaled" , "mcsm_na_scaled" ) outcome_cols_affinity = c( "ligand_outcome" , "mmcsm_lig_outcome" , "mcsm_ppi2_outcome" , "mcsm_na_outcome") #=================== # conservation cols #=================== # raw_cols_conservation = c("consurf_score" # , "snap2_score" # , "provean_score") # # scaled_cols_conservation = c("consurf_scaled" # , "snap2_scaled" # , "provean_scaled") # # # CANNOT strictly be used, as categories are not identical with conssurf missing altogether # outcome_cols_conservation = c("provean_outcome" # , "snap2_outcome" # #consurf outcome doesn't exist # ) ###################################################################### cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols , raw_cols , scaled_cols , outcome_cols_affinity)] # cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols # , outcome_cols_affinity)] ############################################################## ##################### # Ensemble affinity: affinity_cols ##################### # extract outcome cols and map numeric values to the categories # Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising # df3_plot = df3[, cols_to_extract] # # df3_plot[, outcome_cols_affinity] <- sapply(df3_plot[, outcome_cols_affinity] # , function(x){ifelse(x == "Destabilising", 0, 1)}) df3_plot = df3[, c(common_cols, scaled_cols)] #===================================== # Affintiy (2 cols): average the scores # across predictors ==> average by # position ==> scale b/w -1 and 1 # column to average: ens_affinity #===================================== cols_to_average_affinity = which(colnames(df3_plot)%in%outcome_cols_affinity) cols_to_average_affinity # ensemble average across predictors df3_plot_affinity$ens_affinity = rowMeans(df3_plot_affinity[,cols_to_average_affinity]) head(df3_plot_affinity$position); head(df3_plot_affinity$mutationinformation) head(df3_plot_affinity$ens_affinity) table(df3_plot_affinity$ens_affinity) # ensemble average of predictors by position mean_ens_affinity_by_position <- df3_plot_affinity %>% dplyr::group_by(position) %>% dplyr::summarize(avg_ens_affinity = mean(ens_affinity)) # REscale b/w -1 and 1 #en_aff_min = min(mean_ens_affinity_by_position['ens_affinity']) #en_aff_max = max(mean_ens_affinity_by_position['ens_affinity']) # scale the average affintiy value between -1 and 1 # mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity'] # , function(x) ifelse(x < 0, x/abs(en_aff_min), x/en_aff_max)) mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity'] , function(x) { scales::rescale(x, to = c(-1,1) #, from = c(en_aff_min,en_aff_max)) , from = c(0,1)) }) cat(paste0('Average affintiy scores:\n' , head(mean_ens_affinity_by_position['avg_ens_affinity']) , '\n---------------------------------------------------------------' , '\nAverage affintiy scaled scores:\n' , head(mean_ens_affinity_by_position['avg_ens_affinity_scaled']))) #convert to a df mean_ens_affinity_by_position = as.data.frame(mean_ens_affinity_by_position) #FIXME: sanity checks # TODO: predetermine the bounds # l_bound_ens_aff = min(mean_ens_affintiy_by_position['avg_ens_affinity_scaled']) # u_bound_ens_aff = max(mean_ens_affintiy_by_position['avg_ens_affinity_scaled']) # # if ( (l_bound_ens_aff == -1) && (u_bound_ens_aff == 1) ){ # cat(paste0("PASS: ensemble affinity scores averaged by position and then scaled" # , "\nmin ensemble averaged affinity: ", l_bound_ens_aff # , "\nmax ensemble averaged affinity: ", u_bound_ens_aff)) # }else{ # cat(paste0("FAIL: ensemble affinity scores could not be scaled b/w -1 and 1" # , "\nmin ensemble averaged affinity: ", l_bound_ens_aff # , "\nmax ensemble averaged affinity: ", u_bound_ens_aff)) # quit() # } ###################################################################### ################## # merge: mean ensemble stability and affinity by_position #################### # if ( class(mean_ens_stability_by_position) && class(mean_ens_affinity_by_position) != "data.frame"){ # cat("Y") # } common_cols = intersect(colnames(mean_ens_stability_by_position), colnames(mean_ens_affinity_by_position)) if (dim(mean_ens_stability_by_position) && dim(mean_ens_affinity_by_position)){ print(paste0("PASS: dim's match, mering dfs by column :", common_cols)) #combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position )) combined_df = as.data.frame(merge(mean_ens_stability_by_position , mean_ens_affinity_by_position , by = common_cols , all = T)) cat(paste0("\nnrows combined_df:", nrow(combined_df) , "\nnrows combined_df:", ncol(combined_df))) }else{ cat(paste0("FAIL: dim's mismatch, aborting cbind!" , "\nnrows df1:", nrow(mean_duet_by_position) , "\nnrows df2:", nrow(mean_affinity_by_position))) quit() } #%%============================================================ # output write.csv(combined_df, outfile_mean_ens_st_aff , row.names = F) cat("Finished writing file:\n" , outfile_mean_ens_st_aff , "\nNo. of rows:", nrow(combined_df) , "\nNo. of cols:", ncol(combined_df)) # end of script #===============================================================