added combining funct & combining_mcsm_foldx script

This commit is contained in:
Tanushree Tunstall 2020-07-01 16:41:58 +01:00
parent 973a1a33da
commit fb277a1484
4 changed files with 260 additions and 1 deletions

View file

@ -128,7 +128,8 @@ print(merging_cols)
nmerging_cols = len(merging_cols) nmerging_cols = len(merging_cols)
print(' length of merging cols:', nmerging_cols print(' length of merging cols:', nmerging_cols
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols)) , '\nmerging cols:', merging_cols, 'type:', type(merging_cols))
#https://stackoverflow.com/questions/22720739/pandas-left-outer-join-results-in-table-larger-than-left-table
# drop duplicates else the expected rows don't match # drop duplicates else the expected rows don't match
print('Checking for duplicates in common col:', common_cols print('Checking for duplicates in common col:', common_cols
, '\nNo of duplicates:' , '\nNo of duplicates:'

146
scripts/combining.py Executable file
View file

@ -0,0 +1,146 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 2(mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 2 dfs with aa position as linking column
# Input: 2 dfs
# <gene.lower()>_complex_mcsm_norm.csv
# <gene.lower()>_foldx.csv
# Output: .csv of all 2 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
import numpy as np
#from varname import nameof
#%% end of variable assignment for input and output files
#=======================================================================
#%% function/methd to combine 4 dfs
#def combine_stability_dfs(mcsm_df, foldx_df, out_combined_df):
def combine_stability_dfs(mcsm_df, foldx_df, my_join = 'outer'):
"""
Combine 2 dfs
@param mcsm_df: csv file (output from mcsm pipeline)
@type mcsm_df: string
@param foldx_df: csv file (output from runFoldx.py)
@type foldx_df: string
@param out_combined_df: csv file output
@type out_combined_df: string
@return: none, writes combined df as csv
"""
#========================
# read input csv files to combine
#========================
print('Reading input files:')
left_df = pd.read_csv(mcsm_df, sep = ',')
left_df.columns = left_df.columns.str.lower()
right_df = pd.read_csv(foldx_df, sep = ',')
right_df.columns = right_df.columns.str.lower()
print('Dimension left df:', left_df.shape
, '\nDimesnion right_df:', right_df.shape
# , '\njoin type:', join_type
, '\n=========================================================')
print('Finding common cols and merging cols:'
,'\n=========================================================')
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
print('Length of common cols:', len(common_cols)
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
print('selecting consistent dtypes for merging (object i.e string)')
merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
nmerging_cols = len(merging_cols)
print(' length of merging cols:', nmerging_cols
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols)
, '\n=========================================================')
#========================
# merge 1 (combined_df)
# concatenating 2dfs:
# mcsm_df, foldx_df
#========================
# checking cross-over of mutations in the two dfs to merge
#ndiff1 = left_df.shape[0] - left_df['mutationinformation'].isin(right_df['mutationinformation']).sum()
ndiff_1 = left_df[merging_cols].squeeze().isin(right_df[merging_cols].squeeze()).sum()
print('ndiff_1:', ndiff_1)
ndiff1 = left_df.shape[0] - ndiff_1
#print('There are', ndiff1, 'unmatched mutations in left df')
#missing_mutinfo = left_df[~left_df['mutationinformation'].isin(right_df['mutationinformation'])]
#missing_mutinfo.to_csv('infoless_muts.csv')
#ndiff2 = right_df.shape[0] - right_df['mutationinformation'].isin(left_df['mutationinformation']).sum()
ndiff_2 = right_df[merging_cols].squeeze().isin(left_df[merging_cols].squeeze()).sum()
print('ndiff_2:', ndiff_2)
ndiff2 = right_df.shape[0] - ndiff_2
#print('There are', ndiff2, 'unmatched mutations in right_df')
comm = np.intersect1d(left_df[merging_cols], right_df[merging_cols])
comm_count = len(comm)
print('inner:', comm, '\nlength:', comm_count , '\ntype:', type(comm_count))
#========================
# sanity checks for join type
#========================
fail = False
print('combing with:', my_join)
combined_df = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
combined_df1 = combined_df.drop_duplicates(subset = merging_cols, keep ='first')
if my_join == 'inner':
#expected_rows = left_df.shape[0] - ndiff1
expected_rows = comm_count
if my_join == 'outer':
#expected_rows = right_df.shape[0] + ndiff1
expected_rows = max(left_df.shape[0], right_df.shape[0])
if my_join == 'right':
expected_rows = right_df.shape[0]
if my_join == 'left':
expected_rows = left_df.shape[0]
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
if len(combined_df1) == expected_rows and len(combined_df1.columns) == expected_cols:
print('PASS: successfully combined dfs with:', my_join, 'join')
else:
print('FAIL: combined_df\'s expected rows and cols not matched')
fail = True
print('\nExpected no. of rows:', expected_rows
, '\nGot:', len(combined_df1)
, '\nExpected no. of cols:', expected_cols
, '\nGot:', len(combined_df1.columns))
if fail:
sys.exit()
return combined_df1
#%% end of function
#=======================================================================

112
scripts/combining_mcsm_foldx.py Executable file
View file

@ -0,0 +1,112 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 2(mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 2 dfs with aa position as linking column
# Input: 2 dfs
# <gene.lower()>_complex_mcsm_norm.csv
# <gene.lower()>_foldx.csv
# Output: .csv of all 2 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
import numpy as np
#from varname import nameof
import argparse
from combining import combine_stability_dfs
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
#drug = 'pyrazinamide'
#gene = 'pncA'
#gene_match = gene + '_p.'
drug = args.drug
gene = args.gene
#======
# dirs
#======
datadir = homedir + '/' + 'git/Data'
indir = datadir + '/' + drug + '/' + 'output'
outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
in_filename_foldx = gene.lower() + '_foldx.csv'
infile_mcsm = indir + '/' + in_filename_mcsm
infile_foldx = indir + '/' + in_filename_foldx
print('\nInput path:', indir
, '\nInput filename1:', in_filename_mcsm
, '\nInput filename2:', in_filename_foldx
, '\n============================================================')
#=======
# output
#=======
out_filename_comb = gene.lower() + '_mcsm_foldx.csv'
outfile_comb = outdir + '/' + out_filename_comb
print('Output filename:', outfile_comb
, '\n============================================================')
my_join_type = 'outer'
#my_join_type = 'left'
#my_join_type = 'right'
#my_join_type = 'inner'
# end of variable assignment for input and output files
#%% call function
#=======================================================================
#combine_stability_dfs(mcsm_df, foldx_df, outfile)
#=======================================================================
def main():
combined_df = combine_stability_dfs(infile_mcsm, infile_foldx, my_join = my_join_type)
print('Combining 2 dfs...'
, '\nArguments to function combine_stability_dfs:'
, '\ndf1:', in_filename_mcsm
, '\ndf2:', in_filename_foldx
, '\njoin_type:', my_join_type
, '\ncombined df sneak peak:\n'
, combined_df.head())
print('Writing output...')
combined_df.to_csv(outfile_comb, index = False)
print('Finished writing output file'
, '\nOutput file:', outfile_comb
, '\nDimensions:', combined_df.shape)
if __name__ == '__main__':
main()
#=======================================================================
#%% end of script

0
scripts/reference_dict.py Normal file → Executable file
View file