LSHTM_analysis/scripts/combining.py

146 lines
5.3 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 2(mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 2 dfs with aa position as linking column
# Input: 2 dfs
# <gene.lower()>_complex_mcsm_norm.csv
# <gene.lower()>_foldx.csv
# Output: .csv of all 2 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
import numpy as np
#from varname import nameof
#%% end of variable assignment for input and output files
#=======================================================================
#%% function/methd to combine 4 dfs
#def combine_stability_dfs(mcsm_df, foldx_df, out_combined_df):
def combine_stability_dfs(mcsm_df, foldx_df, my_join = 'outer'):
"""
Combine 2 dfs
@param mcsm_df: csv file (output from mcsm pipeline)
@type mcsm_df: string
@param foldx_df: csv file (output from runFoldx.py)
@type foldx_df: string
@param out_combined_df: csv file output
@type out_combined_df: string
@return: none, writes combined df as csv
"""
#========================
# read input csv files to combine
#========================
print('Reading input files:')
left_df = pd.read_csv(mcsm_df, sep = ',')
left_df.columns = left_df.columns.str.lower()
right_df = pd.read_csv(foldx_df, sep = ',')
right_df.columns = right_df.columns.str.lower()
print('Dimension left df:', left_df.shape
, '\nDimesnion right_df:', right_df.shape
# , '\njoin type:', join_type
, '\n=========================================================')
print('Finding common cols and merging cols:'
,'\n=========================================================')
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
print('Length of common cols:', len(common_cols)
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
print('selecting consistent dtypes for merging (object i.e string)')
merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
nmerging_cols = len(merging_cols)
print(' length of merging cols:', nmerging_cols
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols)
, '\n=========================================================')
#========================
# merge 1 (combined_df)
# concatenating 2dfs:
# mcsm_df, foldx_df
#========================
# checking cross-over of mutations in the two dfs to merge
#ndiff1 = left_df.shape[0] - left_df['mutationinformation'].isin(right_df['mutationinformation']).sum()
ndiff_1 = left_df[merging_cols].squeeze().isin(right_df[merging_cols].squeeze()).sum()
print('ndiff_1:', ndiff_1)
ndiff1 = left_df.shape[0] - ndiff_1
#print('There are', ndiff1, 'unmatched mutations in left df')
#missing_mutinfo = left_df[~left_df['mutationinformation'].isin(right_df['mutationinformation'])]
#missing_mutinfo.to_csv('infoless_muts.csv')
#ndiff2 = right_df.shape[0] - right_df['mutationinformation'].isin(left_df['mutationinformation']).sum()
ndiff_2 = right_df[merging_cols].squeeze().isin(left_df[merging_cols].squeeze()).sum()
print('ndiff_2:', ndiff_2)
ndiff2 = right_df.shape[0] - ndiff_2
#print('There are', ndiff2, 'unmatched mutations in right_df')
comm = np.intersect1d(left_df[merging_cols], right_df[merging_cols])
comm_count = len(comm)
print('inner:', comm, '\nlength:', comm_count , '\ntype:', type(comm_count))
#========================
# sanity checks for join type
#========================
fail = False
print('combing with:', my_join)
combined_df = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
combined_df1 = combined_df.drop_duplicates(subset = merging_cols, keep ='first')
if my_join == 'inner':
#expected_rows = left_df.shape[0] - ndiff1
expected_rows = comm_count
if my_join == 'outer':
#expected_rows = right_df.shape[0] + ndiff1
expected_rows = max(left_df.shape[0], right_df.shape[0])
if my_join == 'right':
expected_rows = right_df.shape[0]
if my_join == 'left':
expected_rows = left_df.shape[0]
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
if len(combined_df1) == expected_rows and len(combined_df1.columns) == expected_cols:
print('PASS: successfully combined dfs with:', my_join, 'join')
else:
print('FAIL: combined_df\'s expected rows and cols not matched')
fail = True
print('\nExpected no. of rows:', expected_rows
, '\nGot:', len(combined_df1)
, '\nExpected no. of cols:', expected_cols
, '\nGot:', len(combined_df1.columns))
if fail:
sys.exit()
return combined_df1
#%% end of function
#=======================================================================