added untracked files in scripts/plotting

This commit is contained in:
Tanushree Tunstall 2022-01-04 12:27:25 +00:00
parent 3ab6a3dbc1
commit b66cf31219
4 changed files with 1205 additions and 0 deletions

View file

@ -0,0 +1,214 @@
#!/usr/bin/env Rscript
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
#########################################################
# TASK: Basic lineage barplot showing numbers
# Output: Basic barplot with lineage samples and mut count
##########################################################
# Installing and loading required packages
##########################################################
source("Header_TT.R")
require(data.table)
source("combining_dfs_plotting.R")
# should return the following dfs, directories and variables
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat("Directories imported:"
, "\n===================="
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir)
cat("Variables imported:"
, "\n====================="
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3
, "\ndr_muts_col:", dr_muts_col
, "\nother_muts_col:", other_muts_col
, "\ndrtype_col:", resistance_col)
#===========
# input
#===========
# output of combining_dfs_plotting.R
#=======
# output
#=======
# plot 1
basic_bp_lineage = "basic_lineage_barplot.svg"
plot_basic_bp_lineage = paste0(plotdir,"/", basic_bp_lineage)
#=======================================================================
#================
# Data for plots:
# you need merged_df2, comprehensive one
# since this has one-many relationship
# i.e the same SNP can belong to multiple lineages
#================
# REASSIGNMENT as necessary
my_df = merged_df2
# clear excess variable
rm(merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
#==========================
# Plot: Lineage barplot
# x = lineage y = No. of samples
# col = Lineage
# fill = lineage
#============================
table(my_df$lineage)
as.data.frame(table(my_df$lineage))
#=============
# Data for plots
#=============
# REASSIGNMENT
df <- my_df
rm(my_df)
# get freq count of positions so you can subset freq<1
#setDT(df)[, lineage_count := .N, by = .(lineage)]
#******************
# generate plot: barplot of mutation by lineage
#******************
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4"
#, "lineage5"
#, "lineage6"
#, "lineage7"
)
df_lin = subset(df, subset = lineage %in% sel_lineages)
# Create df with lineage inform & no. of unique mutations
# per lineage and total samples within lineage
# this is essentially barplot with two y axis
bar = bar = as.data.frame(sel_lineages) #4, 1
total_snps_u = NULL
total_samples = NULL
for (i in sel_lineages){
#print(i)
curr_total = length(unique(df$id)[df$lineage==i])
total_samples = c(total_samples, curr_total)
print(total_samples)
foo = df[df$lineage==i,]
print(paste0(i, "======="))
print(length(unique(foo$mutationinformation)))
curr_count = length(unique(foo$mutationinformation))
total_snps_u = c(total_snps_u, curr_count)
}
print(total_snps_u)
bar$num_snps_u = total_snps_u
bar$total_samples = total_samples
bar
#*****************
# generate plot: lineage barplot with two y-axis
#https://stackoverflow.com/questions/13035295/overlay-bar-graphs-in-ggplot2
#*****************
y1 = bar$num_snps_u
y2 = bar$total_samples
x = sel_lineages
to_plot = data.frame(x = x
, y1 = y1
, y2 = y2)
to_plot
# FIXME later: will be depricated!
melted = melt(to_plot, id = "x")
melted
svg(plot_basic_bp_lineage)
my_ats = 20 # axis text size
my_als = 22 # axis label size
g = ggplot(melted, aes(x = x
, y = value
, fill = variable))
printFile = g + geom_bar(stat = "identity"
, position = position_stack(reverse = TRUE)
, alpha=.75
, colour='grey75') +
theme(axis.text.x = element_text(size = my_ats)
, axis.text.y = element_text(size = my_ats
#, angle = 30
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_als
, colour = 'black')
, axis.title.y = element_text(size = my_als
, colour = 'black')
, legend.position = "top"
, legend.text = element_text(size = my_als)) +
#geom_text() +
geom_label(aes(label = value)
, size = 5
, hjust = 0.5
, vjust = 0.5
, colour = 'black'
, show.legend = FALSE
#, check_overlap = TRUE
, position = position_stack(reverse = T)) +
labs(title = ''
, x = ''
, y = "Number"
, fill = 'Variable'
, colour = 'black') +
scale_fill_manual(values = c('grey50', 'gray75')
, name=''
, labels=c('Mutations', 'Total Samples')) +
scale_x_discrete(breaks = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
, labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'))
print(printFile)
dev.off()

View file

@ -0,0 +1,303 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Lineage dist plots: ggridges
# Output: 2 SVGs for PS stability
# 1) all muts
# 2) dr_muts
##########################################################
# Installing and loading required packages
##########################################################
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("Header_TT.R")
library(ggridges)
source("combining_dfs_plotting.R")
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat("Directories imported:"
, "\n===================="
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir)
cat("Variables imported:"
, "\n====================="
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3
, "\ndr_muts_col:", dr_muts_col
, "\nother_muts_col:", other_muts_col
, "\ndrtype_col:", resistance_col)
#=======
# output
#=======
lineage_dist_combined = "lineage_dist_combined_PS.svg"
plot_lineage_dist_combined = paste0(plotdir,"/", lineage_dist_combined)
#========================================================================
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# REASSIGNMENT
my_df = merged_df2
# delete variables not required
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
table(my_df$mutation_info)
# subset df with dr muts only
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
table(my_df_dr$mutation_info)
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#==========================
# Plot 1: ALL Muts
# x = mcsm_values, y = dist
# fill = stability
#============================
my_plot_name = 'lineage_dist_PS.svg'
plot_lineage_duet = paste0(plotdir,"/", my_plot_name)
#===================
# Data for plots
#===================
table(my_df$lineage); str(my_df$lineage)
# subset only lineages1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4"
#, "lineage5"
#, "lineage6"
#, "lineage7"
)
# uncomment as necessary
df_lin = subset(my_df, subset = lineage %in% sel_lineages )
table(df_lin$lineage)
# refactor
df_lin$lineage = factor(df_lin$lineage)
sum(table(df_lin$lineage)) #{RESULT: Total number of samples for lineage}
table(df_lin$lineage)#{RESULT: No of samples within lineage}
length(unique(df_lin$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to}
length(df_lin$mutationinformation)
u2 = unique(my_df$mutationinformation)
u = unique(df_lin$mutationinformation)
check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages}
#%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df <- df_lin
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm(df_lin)
#******************
# generate distribution plot of lineages
#******************
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'
#, 'Lineage 5', 'Lineage 6', 'Lineage 7'
)
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4'
# , 'lineage5', 'lineage6', 'lineage7'
)
# check plot name
plot_lineage_duet
# output svg
#svg(plot_lineage_duet)
p1 = ggplot(df, aes(x = duet_scaled
, y = duet_outcome))+
#printFile=geom_density_ridges_gradient(
geom_density_ridges_gradient(aes(fill = ..x..)
#, jittered_points = TRUE
, scale = 3
, size = 0.3 ) +
facet_wrap( ~lineage
, scales = "free"
#, switch = 'x'
, labeller = labeller(lineage = my_labels) ) +
coord_cartesian( xlim = c(-1, 1)) +
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
, name = "DUET" ) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = my_als-5)
, legend.title = element_text(size = my_als)
)
print(p1)
#dev.off()
#######################################################################
# lineage distribution plot for dr_muts
#######################################################################
#==========================
# Plot 2: dr muts ONLY
# x = mcsm_values, y = dist
# fill = stability
#============================
my_plot_name_dr = 'lineage_dist_dr_muts_PS.svg'
plot_lineage_dr_duet = paste0(plotdir,"/", my_plot_name_dr)
#===================
# Data for plots
#===================
table(my_df_dr$lineage); str(my_df_dr$lineage)
# uncomment as necessary
df_lin_dr = subset(my_df_dr, subset = lineage %in% sel_lineages)
table(df_lin_dr$lineage)
# refactor
df_lin_dr$lineage = factor(df_lin_dr$lineage)
sum(table(df_lin_dr$lineage)) #{RESULT: Total number of samples for lineage}
table(df_lin_dr$lineage)#{RESULT: No of samples within lineage}
length(unique(df_lin_dr$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to}
length(df_lin_dr$mutationinformation)
u2 = unique(my_df_dr$mutationinformation)
u = unique(df_lin_dr$mutationinformation)
check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages}
#%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df_dr <- df_lin_dr
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm(df_lin_dr)
#******************
# generate distribution plot of lineages
#******************
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
# check plot name
plot_lineage_dr_duet
# output svg
#svg(plot_lineage_dr_duet)
p2 = ggplot(df_dr, aes(x = duet_scaled
, y = duet_outcome))+
geom_density_ridges_gradient(aes(fill = ..x..)
#, jittered_points = TRUE
, scale = 3
, size = 0.3) +
#geom_point(aes(size = or_mychisq))+
facet_wrap( ~lineage
, scales = "free"
#, switch = 'x'
, labeller = labeller(lineage = my_labels) ) +
coord_cartesian( xlim = c(-1, 1)
#, ylim = c(0, 6)
#, clip = "off"
) +
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
, name = "DUET" ) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = 10)
, legend.title = element_text(size = my_als)
#, legend.position = "none"
)
print(p2)
#dev.off()
########################################################################
#==============
# combine plot
#===============
svg(plot_lineage_dist_combined, width = 12, height = 6)
printFile = cowplot::plot_grid(p1, p2
, label_size = my_als+10)
print(printFile)
dev.off()

View file

@ -0,0 +1,387 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Lineage dist plots: ggridges
# Output: 2 SVGs for PS stability
# 1) all muts
# 2) dr_muts
##########################################################
# Installing and loading required packages
##########################################################
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("Header_TT.R")
library(ggridges)
library(plyr)
source("combining_dfs_plotting.R")
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat("Directories imported:"
, "\n===================="
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir)
cat("Variables imported:"
, "\n====================="
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3
, "\ndr_muts_col:", dr_muts_col
, "\nother_muts_col:", other_muts_col
, "\ndrtype_col:", resistance_col)
cat("cols imported:"
, mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2)
#=======
# output
#=======
lineage_dist_combined_dm_om = "lineage_dist_combined_dm_om_PS.svg"
plot_lineage_dist_combined_dm_om = paste0(plotdir,"/", lineage_dist_combined_dm_om)
lineage_dist_combined_dm_om_L = "lineage_dist_combined_dm_om_PS_labelled.svg"
plot_lineage_dist_combined_dm_om_L = paste0(plotdir,"/", lineage_dist_combined_dm_om_L)
#========================================================================
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# REASSIGNMENT
my_df = merged_df2
# delete variables not required
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp
, merged_df2_lig, merged_df2_comp_lig, merged_df3_lig, merged_df3_comp_lig)
# quick checks
colnames(my_df)
str(my_df)
table(my_df$mutation_info)
#===================
# Data for plots
#===================
table(my_df$lineage); str(my_df$lineage)
# select lineages 1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
#, "lineage5"
#, "lineage6"
#, "lineage7")
# works nicely with facet wrap using labeller, but not otherwise
#my_labels = c('Lineage 1'
# , 'Lineage 2'
# , 'Lineage 3'
# , 'Lineage 4')
# #, 'Lineage 5'
# #, 'Lineage 6'
# #, 'Lineage 7')
#names(my_labels) = c('lineage1'
# , 'lineage2'
# , 'lineage3'
# , 'lineage4')
# #, 'lineage5'
# #, 'lineage6'
# #, 'lineage7')
#==========================
# subset selected lineages
#==========================
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
table(df_lin$lineage)
#{RESULT: Total number of samples for lineage}
sum(table(df_lin$lineage))
#{RESULT: No of samples within lineage}
table(df_lin$lineage)
#{Result: No. of unique mutations the 4 lineages contribute to}
length(unique(df_lin$mutationinformation))
u2 = unique(my_df$mutationinformation)
u = unique(df_lin$mutationinformation)
#{Result:Muts not present within selected lineages}
check = u2[!u2%in%u]; print(check)
# workaround to make labels appear nicely for in otherwise cases
#==================
# lineage: labels
# from "plyr"
#==================
#{Result:No of samples in selected lineages}
table(df_lin$lineage)
df_lin$lineage_labels = mapvalues(df_lin$lineage
, from = c("lineage1","lineage2", "lineage3", "lineage4")
, to = c("Lineage 1", "Lineage 2", "Lineage 3", "Lineage 4"))
table(df_lin$lineage_labels)
table(df_lin$lineage_labels) == table(df_lin$lineage)
#========================
# mutation_info: labels
#========================
#{Result:No of DM and OM muts in selected lineages}
table(df_lin$mutation_info)
df_lin$mutation_info_labels = ifelse(df_lin$mutation_info == dr_muts_col, "DM", "OM")
table(df_lin$mutation_info_labels)
table(df_lin$mutation_info) == table(df_lin$mutation_info_labels)
#========================
# duet_outcome: labels
#========================
#{Result: No. of D and S mutations in selected lineages}
table(df_lin$duet_outcome)
df_lin$duet_outcome_labels = ifelse(df_lin$duet_outcome == "Destabilising", "D", "S")
table(df_lin$duet_outcome_labels)
table(df_lin$duet_outcome) == table(df_lin$duet_outcome_labels)
#=======================
# subset dr muts only
#=======================
#my_df_dr = subset(df_lin, mutation_info == dr_muts_col)
#table(my_df_dr$mutation_info)
#table(my_df_dr$lineage)
#=========================
# subset other muts only
#=========================
#my_df_other = subset(df_lin, mutation_info == other_muts_col)
#table(my_df_other$mutation_info)
#table(my_df_other$lineage)
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#==========================
# Distribution plots
#============================
#%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df <- df_lin
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm(df_lin)
#******************
# generate distribution plot of lineages
#******************
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
n_colours = length(unique(df$duet_scaled))
my_palette <- colorRampPalette(c(mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2))(n = n_colours+1)
#=======================================
# Plot 1: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!)
# else same as geom_density_ridges)
# x = duet_scaled
# y = duet_outcome
# fill = duet_scaled
# Facet: Lineage
#=======================================
# output individual svg
#plot_lineage_dist_duet_f paste0(plotdir,"/", "lineage_dist_duet_f.svg")
#plot_lineage_dist_duet_f
#svg(plot_lineage_dist_duet_f)
p1 = ggplot(df, aes(x = duet_scaled
, y = duet_outcome))+
geom_density_ridges_gradient(aes(fill = ..x..)
#, jittered_points = TRUE
, scale = 3
, size = 0.3 ) +
facet_wrap( ~lineage_labels
# , scales = "free"
# , labeller = labeller(lineage = my_labels)
) +
coord_cartesian( xlim = c(-1, 1)) +
scale_fill_gradientn(colours = my_palette
, name = "DUET"
#, breaks = c(-1, 0, 1)
#, labels = c(-1,0,1)
#, limits = c(-1,1)
) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
#, axis.text.y = element_blank()
, axis.text.y = element_text(size = my_ats)
, axis.title.x = element_text(size = my_ats)
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = my_als-10)
#, legend.title = element_text(size = my_als-6)
, legend.title = element_blank()
, legend.position = c(-0.08, 0.41)
#, legend.direction = "horizontal"
#, legend.position = "left"
)+
labs(x = "DUET")
p1
#p1_with_legend = p1 + guides(fill = guide_colourbar(label = FALSE))
#=======================================
# Plot 2: lineage dist: geom_density_ridges, allows alpha to be set
# x = duet_scaled
# y = lineage_labels
# fill = mutation_info
# NO FACET
#=======================================
# output svg
#plot_lineage_dist_duet_dm_om = paste0(plotdir,"/", "lineage_dist_duet_dm_om.svg")
#plot_lineage_dist_duet_dm_om
#svg(plot_lineage_dist_duet_dm_om)
p2 = ggplot(df, aes(x = duet_scaled
, y = lineage_labels))+
geom_density_ridges(aes(fill = factor(mutation_info_labels))
, scale = 3
, size = 0.3
, alpha = 0.8) +
coord_cartesian( xlim = c(-1, 1)) +
scale_fill_manual(values = c("#E69F00", "#999999")) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = my_ats)
, axis.title.x = element_text(size = my_ats)
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = my_als-4)
, legend.title = element_text(size = my_als-4)
, legend.position = c(0.8, 0.9)) +
labs(x = "DUET"
, fill = "Mutation class") # legend title
p2
#=======================================
# Plot 3: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!)
# else same as geom_density_ridges)
# x = duet_scaled
# y = lineage_labels
# fill = duet_scaled
# NO FACET (nf)
#=======================================
# output individual svg
#plot_lineage_dist_duet_nf = paste0(plotdir,"/", "lineage_dist_duet_nf.svg")
#plot_lineage_dist_duet_nf
#svg(plot_lineage_dist_duet_nf)
p3 = ggplot(df, aes(x = duet_scaled
, y = lineage_labels))+
geom_density_ridges_gradient(aes(fill = ..x..)
#, jittered_points = TRUE
, scale = 3
, size = 0.3 ) +
coord_cartesian( xlim = c(-1, 1)) +
scale_fill_gradientn(colours = my_palette, name = "DUET") +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = my_ats)
, axis.title.x = element_text(size = my_ats)
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = my_als-10)
, legend.title = element_text(size = my_als-3)
, legend.position = c(0.8, 0.8)) +
#, legend.direction = "horizontal")+
#, legend.position = "top")+
labs(x = "DUET")
p3
########################################################################
#==============
# combine plots
#===============
# 1) without labels
plot_lineage_dist_combined_dm_om
svg(plot_lineage_dist_combined_dm_om, width = 12, height = 6)
OutPlot1 = cowplot::plot_grid(p1, p2
, rel_widths = c(0.5/2, 0.5/2))
print(OutPlot1)
dev.off()
# 2) with labels
plot_lineage_dist_combined_dm_om_L
svg(plot_lineage_dist_combined_dm_om_L, width = 12, height = 6)
OutPlot2 = cowplot::plot_grid(p1, p2
#, labels = c("(a)", "(b)")
, labels = "AUTO"
#, label_x = -0.045, label_y = 0.92
#, hjust = -0.7, vjust = -0.5
#, align = "h"
, rel_widths = c(0.5/2, 0.5/2)
, label_size = my_als)
print(OutPlot2)
dev.off()
##############################################################################

View file

@ -0,0 +1,301 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: producing boxplots for dr and other muts
#########################################################
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#source("Header_TT.R")
library(ggplot2)
library(data.table)
library(dplyr)
library(tidyverse)
source("combining_dfs_plotting.R")
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
, merged_df3_comp, merged_df3_comp_lig
, my_df_u, my_df_u_lig)
cols_to_select = c("mutation", "mutationinformation"
, "wild_type", "position", "mutant_type"
, "mutation_info")
merged_df3_short = merged_df3[, cols_to_select]
# write merged_df3 to generate structural figure
write.csv(merged_df3_short, "merged_df3_short.csv")
#========================================================================
#%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT: PS
#%%%%%%%%%%%%%%%%%%%%
df_ps = merged_df3
#============================
# adding foldx scaled values
# scale data b/w -1 and 1
#============================
n = which(colnames(df_ps) == "ddg"); n
my_min = min(df_ps[,n]); my_min
my_max = max(df_ps[,n]); my_max
df_ps$foldx_scaled = ifelse(df_ps[,n] < 0
, df_ps[,n]/abs(my_min)
, df_ps[,n]/my_max)
# sanity check
my_min = min(df_ps$foldx_scaled); my_min
my_max = max(df_ps$foldx_scaled); my_max
if (my_min == -1 && my_max == 1){
cat("PASS: foldx ddg successfully scaled b/w -1 and 1"
, "\nProceeding with assigning foldx outcome category")
}else{
cat("FAIL: could not scale foldx ddg values"
, "Aborting!")
}
#================================
# adding foldx outcome category
# ddg<0 = "Stabilising" (-ve)
#=================================
c1 = table(df_ps$ddg < 0)
df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising")
c2 = table(df_ps$ddg < 0)
if ( all(c1 == c2) ){
cat("PASS: foldx outcome successfully created")
}else{
cat("FAIL: foldx outcome could not be created. Aborting!")
exit()
}
#=======================================================================
# name tidying
df_ps$mutation_info = as.factor(df_ps$mutation_info)
df_ps$duet_outcome = as.factor(df_ps$duet_outcome)
df_ps$foldx_outcome = as.factor(df_ps$foldx_outcome)
df_ps$ligand_outcome = as.factor(df_ps$ligand_outcome)
# check
table(df_ps$mutation_info)
# further checks to make sure dr and other muts are indeed unique
dr_muts = df_ps[df_ps$mutation_info == dr_muts_col,]
dr_muts_names = unique(dr_muts$mutation)
other_muts = df_ps[df_ps$mutation_info == other_muts_col,]
other_muts_names = unique(other_muts$mutation)
if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) &&
table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){
cat("PASS: dr and other muts are indeed unique")
}else{
cat("FAIL: dr adn others muts are NOT unique!")
quit()
}
#%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT: LIG
#%%%%%%%%%%%%%%%%%%%%
df_lig = merged_df3_lig
# name tidying
df_lig$mutation_info = as.factor(df_lig$mutation_info)
df_lig$duet_outcome = as.factor(df_lig$duet_outcome)
#df_lig$ligand_outcome = as.factor(df_lig$ligand_outcome)
# check
table(df_lig$mutation_info)
#========================================================================
#===========
# Data: ps
#===========
# keep similar dtypes cols together
cols_to_select_ps = c("mutationinformation", "mutation", "position", "mutation_info"
, "duet_outcome"
, "duet_scaled"
, "ligand_distance"
, "asa"
, "rsa"
, "rd_values"
, "kd_values")
df_wf_ps = df_ps[, cols_to_select_ps]
pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps
expected_rows_lf_ps = nrow(df_wf_ps) * (length(df_wf_ps) - length(pivot_cols_ps))
expected_rows_lf_ps
# LF data: duet
df_lf_ps = gather(df_wf_ps, param_type, param_value, duet_scaled:kd_values, factor_key=TRUE)
if (nrow(df_lf_ps) == expected_rows_lf_ps){
cat("PASS: long format data created for duet")
}else{
cat("FAIL: long format data could not be created for duet")
exit()
}
str(df_wf_ps)
str(df_lf_ps)
# assign pretty labels: param_type
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
ligand_dist_colname = paste0("Distance to ligand (", angstroms_symbol, ")")
ligand_dist_colname
duet_stability_name = paste0(delta_symbol, delta_symbol, "G")
duet_stability_name
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- "Stability"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- duet_stability_name
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- "Ligand Distance"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- ligand_dist_colname
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="asa"] <- "ASA"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rsa"] <- "RSA"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rd_values"] <- "RD"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="kd_values"] <- "KD"
# check
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
# assign pretty labels: mutation_info
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
sum(table(df_lf_ps$mutation_info)) == nrow(df_lf_ps)
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
############################################################################
#===========
# LF data: LIG
#===========
# keep similar dtypes cols together
cols_to_select_lig = c("mutationinformation", "mutation", "position", "mutation_info"
, "ligand_outcome"
, "affinity_scaled"
#, "ligand_distance"
, "asa"
, "rsa"
, "rd_values"
, "kd_values")
df_wf_lig = df_lig[, cols_to_select_lig]
pivot_cols_lig = cols_to_select_lig[1:5]; pivot_cols_lig
expected_rows_lf_lig = nrow(df_wf_lig) * (length(df_wf_lig) - length(pivot_cols_lig))
expected_rows_lf_lig
# LF data: foldx
df_lf_lig = gather(df_wf_lig, param_type, param_value, affinity_scaled:kd_values, factor_key=TRUE)
if (nrow(df_lf_lig) == expected_rows_lf_lig){
cat("PASS: long format data created for foldx")
}else{
cat("FAIL: long format data could not be created for foldx")
exit()
}
# assign pretty labels: param_type
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="affinity_scaled"] <- "Ligand Affinity"
#levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="ligand_distance"] <- "Ligand Distance"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="asa"] <- "ASA"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rsa"] <- "RSA"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rd_values"] <- "RD"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="kd_values"] <- "KD"
#check
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
# assign pretty labels: mutation_info
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
sum(table(df_lf_lig$mutation_info)) == nrow(df_lf_lig)
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
#############################################################################
#===========
# Data: foldx
#===========
# keep similar dtypes cols together
cols_to_select_foldx = c("mutationinformation", "mutation", "position", "mutation_info"
, "foldx_outcome"
, "foldx_scaled")
#, "ligand_distance"
#, "asa"
#, "rsa"
#, "rd_values"
#, "kd_values")
df_wf_foldx = df_ps[, cols_to_select_foldx]
pivot_cols_foldx = cols_to_select_foldx[1:5]; pivot_cols_foldx
expected_rows_lf_foldx = nrow(df_wf_foldx) * (length(df_wf_foldx) - length(pivot_cols_foldx))
expected_rows_lf_foldx
# LF data: foldx
df_lf_foldx = gather(df_wf_foldx, param_type, param_value, foldx_scaled, factor_key=TRUE)
if (nrow(df_lf_foldx) == expected_rows_lf_foldx){
cat("PASS: long format data created for foldx")
}else{
cat("FAIL: long format data could not be created for foldx")
exit()
}
foldx_stability_name = paste0(delta_symbol, delta_symbol, "G")
foldx_stability_name
# assign pretty labels: param type
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- "Stability"
levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- foldx_stability_name
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="ligand_distance"] <- "Ligand Distance"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="asa"] <- "ASA"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rsa"] <- "RSA"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rd_values"] <- "RD"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="kd_values"] <- "KD"
# check
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
# assign pretty labels: mutation_info
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
sum(table(df_lf_foldx$mutation_info)) == nrow(df_lf_foldx)
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
############################################################################
# clear excess variables
rm(cols_to_select_ps, cols_to_select_foldx, cols_to_select_lig
, pivot_cols_ps, pivot_cols_foldx, pivot_cols_lig
, expected_rows_lf_ps, expected_rows_lf_foldx, expected_rows_lf_lig
, my_max, my_min, na_count, na_count_df2, na_count_df3, dup_muts_nu
, c1, c2, n)