diff --git a/scripts/plotting/lineage_basic_barplot.R b/scripts/plotting/lineage_basic_barplot.R new file mode 100644 index 0000000..e4503d1 --- /dev/null +++ b/scripts/plotting/lineage_basic_barplot.R @@ -0,0 +1,214 @@ +#!/usr/bin/env Rscript +getwd() +setwd("~/git/LSHTM_analysis/scripts/plotting/") +getwd() +######################################################### +# TASK: Basic lineage barplot showing numbers + +# Output: Basic barplot with lineage samples and mut count + +########################################################## +# Installing and loading required packages +########################################################## +source("Header_TT.R") +require(data.table) +source("combining_dfs_plotting.R") +# should return the following dfs, directories and variables + +# PS combined: +# 1) merged_df2 +# 2) merged_df2_comp +# 3) merged_df3 +# 4) merged_df3_comp + +# LIG combined: +# 5) merged_df2_lig +# 6) merged_df2_comp_lig +# 7) merged_df3_lig +# 8) merged_df3_comp_lig + +# 9) my_df_u +# 10) my_df_u_lig + +cat("Directories imported:" + , "\n====================" + , "\ndatadir:", datadir + , "\nindir:", indir + , "\noutdir:", outdir + , "\nplotdir:", plotdir) + +cat("Variables imported:" + , "\n=====================" + , "\ndrug:", drug + , "\ngene:", gene + , "\ngene_match:", gene_match + , "\nAngstrom symbol:", angstroms_symbol + , "\nNo. of duplicated muts:", dup_muts_nu + , "\nNA count for ORs:", na_count + , "\nNA count in df2:", na_count_df2 + , "\nNA count in df3:", na_count_df3 + , "\ndr_muts_col:", dr_muts_col + , "\nother_muts_col:", other_muts_col + , "\ndrtype_col:", resistance_col) + + +#=========== +# input +#=========== +# output of combining_dfs_plotting.R + +#======= +# output +#======= +# plot 1 +basic_bp_lineage = "basic_lineage_barplot.svg" +plot_basic_bp_lineage = paste0(plotdir,"/", basic_bp_lineage) + +#======================================================================= +#================ +# Data for plots: +# you need merged_df2, comprehensive one +# since this has one-many relationship +# i.e the same SNP can belong to multiple lineages +#================ +# REASSIGNMENT as necessary +my_df = merged_df2 + +# clear excess variable +rm(merged_df2_comp, merged_df3, merged_df3_comp) + +# quick checks +colnames(my_df) +str(my_df) + +# Ensure correct data type in columns to plot: need to be factor +is.factor(my_df$lineage) +my_df$lineage = as.factor(my_df$lineage) +is.factor(my_df$lineage) + +#========================== +# Plot: Lineage barplot +# x = lineage y = No. of samples +# col = Lineage +# fill = lineage +#============================ +table(my_df$lineage) +as.data.frame(table(my_df$lineage)) + +#============= +# Data for plots +#============= +# REASSIGNMENT +df <- my_df + +rm(my_df) + +# get freq count of positions so you can subset freq<1 +#setDT(df)[, lineage_count := .N, by = .(lineage)] + +#****************** +# generate plot: barplot of mutation by lineage +#****************** +sel_lineages = c("lineage1" + , "lineage2" + , "lineage3" + , "lineage4" + #, "lineage5" + #, "lineage6" + #, "lineage7" + ) + +df_lin = subset(df, subset = lineage %in% sel_lineages) + +# Create df with lineage inform & no. of unique mutations +# per lineage and total samples within lineage +# this is essentially barplot with two y axis + +bar = bar = as.data.frame(sel_lineages) #4, 1 +total_snps_u = NULL +total_samples = NULL + +for (i in sel_lineages){ + #print(i) + curr_total = length(unique(df$id)[df$lineage==i]) + total_samples = c(total_samples, curr_total) + print(total_samples) + + foo = df[df$lineage==i,] + print(paste0(i, "=======")) + print(length(unique(foo$mutationinformation))) + curr_count = length(unique(foo$mutationinformation)) + + total_snps_u = c(total_snps_u, curr_count) +} + +print(total_snps_u) +bar$num_snps_u = total_snps_u +bar$total_samples = total_samples +bar + +#***************** +# generate plot: lineage barplot with two y-axis +#https://stackoverflow.com/questions/13035295/overlay-bar-graphs-in-ggplot2 +#***************** + +y1 = bar$num_snps_u +y2 = bar$total_samples +x = sel_lineages + +to_plot = data.frame(x = x + , y1 = y1 + , y2 = y2) +to_plot + +# FIXME later: will be depricated! +melted = melt(to_plot, id = "x") +melted + + +svg(plot_basic_bp_lineage) + +my_ats = 20 # axis text size +my_als = 22 # axis label size + +g = ggplot(melted, aes(x = x + , y = value + , fill = variable)) + +printFile = g + geom_bar(stat = "identity" + , position = position_stack(reverse = TRUE) + , alpha=.75 + , colour='grey75') + + theme(axis.text.x = element_text(size = my_ats) + , axis.text.y = element_text(size = my_ats + #, angle = 30 + , hjust = 1 + , vjust = 0) + , axis.title.x = element_text(size = my_als + , colour = 'black') + , axis.title.y = element_text(size = my_als + , colour = 'black') + , legend.position = "top" + , legend.text = element_text(size = my_als)) + + #geom_text() + + geom_label(aes(label = value) + , size = 5 + , hjust = 0.5 + , vjust = 0.5 + , colour = 'black' + , show.legend = FALSE + #, check_overlap = TRUE + , position = position_stack(reverse = T)) + + labs(title = '' + , x = '' + , y = "Number" + , fill = 'Variable' + , colour = 'black') + + scale_fill_manual(values = c('grey50', 'gray75') + , name='' + , labels=c('Mutations', 'Total Samples')) + + scale_x_discrete(breaks = c('lineage1', 'lineage2', 'lineage3', 'lineage4') + , labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')) + +print(printFile) +dev.off() diff --git a/scripts/plotting/lineage_dist_combined_PS.R b/scripts/plotting/lineage_dist_combined_PS.R new file mode 100644 index 0000000..bf1c75b --- /dev/null +++ b/scripts/plotting/lineage_dist_combined_PS.R @@ -0,0 +1,303 @@ +#!/usr/bin/env Rscript +######################################################### +# TASK: Lineage dist plots: ggridges + +# Output: 2 SVGs for PS stability + +# 1) all muts +# 2) dr_muts + +########################################################## +# Installing and loading required packages +########################################################## +getwd() +setwd("~/git/LSHTM_analysis/scripts/plotting/") +getwd() + +source("Header_TT.R") +library(ggridges) +source("combining_dfs_plotting.R") +# PS combined: +# 1) merged_df2 +# 2) merged_df2_comp +# 3) merged_df3 +# 4) merged_df3_comp + +# LIG combined: +# 5) merged_df2_lig +# 6) merged_df2_comp_lig +# 7) merged_df3_lig +# 8) merged_df3_comp_lig + +# 9) my_df_u +# 10) my_df_u_lig + +cat("Directories imported:" + , "\n====================" + , "\ndatadir:", datadir + , "\nindir:", indir + , "\noutdir:", outdir + , "\nplotdir:", plotdir) + +cat("Variables imported:" + , "\n=====================" + , "\ndrug:", drug + , "\ngene:", gene + , "\ngene_match:", gene_match + , "\nAngstrom symbol:", angstroms_symbol + , "\nNo. of duplicated muts:", dup_muts_nu + , "\nNA count for ORs:", na_count + , "\nNA count in df2:", na_count_df2 + , "\nNA count in df3:", na_count_df3 + , "\ndr_muts_col:", dr_muts_col + , "\nother_muts_col:", other_muts_col + , "\ndrtype_col:", resistance_col) + +#======= +# output +#======= +lineage_dist_combined = "lineage_dist_combined_PS.svg" +plot_lineage_dist_combined = paste0(plotdir,"/", lineage_dist_combined) +#======================================================================== + +########################### +# Data for plots +# you need merged_df2 or merged_df2_comp +# since this is one-many relationship +# i.e the same SNP can belong to multiple lineages +# using the _comp dataset means +# we lose some muts and at this level, we should use +# as much info as available, hence use df with NA +########################### +# REASSIGNMENT +my_df = merged_df2 + +# delete variables not required +rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp) + +# quick checks +colnames(my_df) +str(my_df) + +# Ensure correct data type in columns to plot: need to be factor +is.factor(my_df$lineage) +my_df$lineage = as.factor(my_df$lineage) +is.factor(my_df$lineage) + +table(my_df$mutation_info) + +# subset df with dr muts only +my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide") +table(my_df_dr$mutation_info) + +######################################################################## +# end of data extraction and cleaning for plots # +######################################################################## + +#========================== +# Plot 1: ALL Muts +# x = mcsm_values, y = dist +# fill = stability +#============================ + +my_plot_name = 'lineage_dist_PS.svg' + +plot_lineage_duet = paste0(plotdir,"/", my_plot_name) + +#=================== +# Data for plots +#=================== +table(my_df$lineage); str(my_df$lineage) + +# subset only lineages1-4 +sel_lineages = c("lineage1" + , "lineage2" + , "lineage3" + , "lineage4" + #, "lineage5" + #, "lineage6" + #, "lineage7" + ) + +# uncomment as necessary +df_lin = subset(my_df, subset = lineage %in% sel_lineages ) +table(df_lin$lineage) + +# refactor +df_lin$lineage = factor(df_lin$lineage) + +sum(table(df_lin$lineage)) #{RESULT: Total number of samples for lineage} + +table(df_lin$lineage)#{RESULT: No of samples within lineage} + +length(unique(df_lin$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to} + +length(df_lin$mutationinformation) + +u2 = unique(my_df$mutationinformation) +u = unique(df_lin$mutationinformation) +check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages} + +#%%%%%%%%%%%%%%%%%%%%%%%%% +# REASSIGNMENT +df <- df_lin +#%%%%%%%%%%%%%%%%%%%%%%%%% + +rm(df_lin) + +#****************** +# generate distribution plot of lineages +#****************** +# 2 : ggridges (good!) +my_ats = 15 # axis text size +my_als = 20 # axis label size + +my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4' + #, 'Lineage 5', 'Lineage 6', 'Lineage 7' + ) +names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4' + # , 'lineage5', 'lineage6', 'lineage7' + ) +# check plot name +plot_lineage_duet + +# output svg +#svg(plot_lineage_duet) +p1 = ggplot(df, aes(x = duet_scaled + , y = duet_outcome))+ + + #printFile=geom_density_ridges_gradient( + geom_density_ridges_gradient(aes(fill = ..x..) + #, jittered_points = TRUE + , scale = 3 + , size = 0.3 ) + + facet_wrap( ~lineage + , scales = "free" + #, switch = 'x' + , labeller = labeller(lineage = my_labels) ) + + coord_cartesian( xlim = c(-1, 1)) + + scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4") + , name = "DUET" ) + + theme(axis.text.x = element_text(size = my_ats + , angle = 90 + , hjust = 1 + , vjust = 0.4) + + , axis.text.y = element_blank() + , axis.title.x = element_blank() + , axis.title.y = element_blank() + , axis.ticks.y = element_blank() + , plot.title = element_blank() + , strip.text = element_text(size = my_als) + , legend.text = element_text(size = my_als-5) + , legend.title = element_text(size = my_als) +) + +print(p1) +#dev.off() + +####################################################################### +# lineage distribution plot for dr_muts +####################################################################### + +#========================== +# Plot 2: dr muts ONLY +# x = mcsm_values, y = dist +# fill = stability +#============================ + +my_plot_name_dr = 'lineage_dist_dr_muts_PS.svg' + +plot_lineage_dr_duet = paste0(plotdir,"/", my_plot_name_dr) + +#=================== +# Data for plots +#=================== +table(my_df_dr$lineage); str(my_df_dr$lineage) + +# uncomment as necessary +df_lin_dr = subset(my_df_dr, subset = lineage %in% sel_lineages) +table(df_lin_dr$lineage) + +# refactor +df_lin_dr$lineage = factor(df_lin_dr$lineage) + +sum(table(df_lin_dr$lineage)) #{RESULT: Total number of samples for lineage} + +table(df_lin_dr$lineage)#{RESULT: No of samples within lineage} + +length(unique(df_lin_dr$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to} + +length(df_lin_dr$mutationinformation) + +u2 = unique(my_df_dr$mutationinformation) +u = unique(df_lin_dr$mutationinformation) +check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages} + +#%%%%%%%%%%%%%%%%%%%%%%%%% +# REASSIGNMENT +df_dr <- df_lin_dr +#%%%%%%%%%%%%%%%%%%%%%%%%% + +rm(df_lin_dr) + +#****************** +# generate distribution plot of lineages +#****************** +# 2 : ggridges (good!) +my_ats = 15 # axis text size +my_als = 20 # axis label size + + +# check plot name +plot_lineage_dr_duet + +# output svg +#svg(plot_lineage_dr_duet) +p2 = ggplot(df_dr, aes(x = duet_scaled + , y = duet_outcome))+ + + geom_density_ridges_gradient(aes(fill = ..x..) + #, jittered_points = TRUE + , scale = 3 + , size = 0.3) + + #geom_point(aes(size = or_mychisq))+ + facet_wrap( ~lineage + , scales = "free" + #, switch = 'x' + , labeller = labeller(lineage = my_labels) ) + + coord_cartesian( xlim = c(-1, 1) + #, ylim = c(0, 6) + #, clip = "off" + ) + + scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4") + , name = "DUET" ) + + theme(axis.text.x = element_text(size = my_ats + , angle = 90 + , hjust = 1 + , vjust = 0.4) + , axis.text.y = element_blank() + , axis.title.x = element_blank() + , axis.title.y = element_blank() + , axis.ticks.y = element_blank() + , plot.title = element_blank() + , strip.text = element_text(size = my_als) + , legend.text = element_text(size = 10) + , legend.title = element_text(size = my_als) + #, legend.position = "none" + ) + +print(p2) +#dev.off() +######################################################################## +#============== +# combine plot +#=============== + +svg(plot_lineage_dist_combined, width = 12, height = 6) + +printFile = cowplot::plot_grid(p1, p2 + , label_size = my_als+10) + +print(printFile) +dev.off() diff --git a/scripts/plotting/lineage_dist_dm_om_combined_PS.R b/scripts/plotting/lineage_dist_dm_om_combined_PS.R new file mode 100644 index 0000000..07912ac --- /dev/null +++ b/scripts/plotting/lineage_dist_dm_om_combined_PS.R @@ -0,0 +1,387 @@ +#!/usr/bin/env Rscript +######################################################### +# TASK: Lineage dist plots: ggridges + +# Output: 2 SVGs for PS stability + +# 1) all muts +# 2) dr_muts + +########################################################## +# Installing and loading required packages +########################################################## +getwd() +setwd("~/git/LSHTM_analysis/scripts/plotting/") +getwd() + +source("Header_TT.R") +library(ggridges) +library(plyr) +source("combining_dfs_plotting.R") +# PS combined: +# 1) merged_df2 +# 2) merged_df2_comp +# 3) merged_df3 +# 4) merged_df3_comp + +# LIG combined: +# 5) merged_df2_lig +# 6) merged_df2_comp_lig +# 7) merged_df3_lig +# 8) merged_df3_comp_lig + +# 9) my_df_u +# 10) my_df_u_lig + +cat("Directories imported:" + , "\n====================" + , "\ndatadir:", datadir + , "\nindir:", indir + , "\noutdir:", outdir + , "\nplotdir:", plotdir) + +cat("Variables imported:" + , "\n=====================" + , "\ndrug:", drug + , "\ngene:", gene + , "\ngene_match:", gene_match + , "\nAngstrom symbol:", angstroms_symbol + , "\nNo. of duplicated muts:", dup_muts_nu + , "\nNA count for ORs:", na_count + , "\nNA count in df2:", na_count_df2 + , "\nNA count in df3:", na_count_df3 + , "\ndr_muts_col:", dr_muts_col + , "\nother_muts_col:", other_muts_col + , "\ndrtype_col:", resistance_col) + +cat("cols imported:" + , mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2) + +#======= +# output +#======= +lineage_dist_combined_dm_om = "lineage_dist_combined_dm_om_PS.svg" +plot_lineage_dist_combined_dm_om = paste0(plotdir,"/", lineage_dist_combined_dm_om) + +lineage_dist_combined_dm_om_L = "lineage_dist_combined_dm_om_PS_labelled.svg" +plot_lineage_dist_combined_dm_om_L = paste0(plotdir,"/", lineage_dist_combined_dm_om_L) + +#======================================================================== + +########################### +# Data for plots +# you need merged_df2 or merged_df2_comp +# since this is one-many relationship +# i.e the same SNP can belong to multiple lineages +# using the _comp dataset means +# we lose some muts and at this level, we should use +# as much info as available, hence use df with NA +########################### +# REASSIGNMENT +my_df = merged_df2 + +# delete variables not required +rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp + , merged_df2_lig, merged_df2_comp_lig, merged_df3_lig, merged_df3_comp_lig) + +# quick checks +colnames(my_df) +str(my_df) + +table(my_df$mutation_info) + +#=================== +# Data for plots +#=================== +table(my_df$lineage); str(my_df$lineage) + +# select lineages 1-4 +sel_lineages = c("lineage1" + , "lineage2" + , "lineage3" + , "lineage4") + #, "lineage5" + #, "lineage6" + #, "lineage7") + +# works nicely with facet wrap using labeller, but not otherwise +#my_labels = c('Lineage 1' +# , 'Lineage 2' +# , 'Lineage 3' +# , 'Lineage 4') +# #, 'Lineage 5' +# #, 'Lineage 6' +# #, 'Lineage 7') + +#names(my_labels) = c('lineage1' +# , 'lineage2' +# , 'lineage3' +# , 'lineage4') +# #, 'lineage5' +# #, 'lineage6' +# #, 'lineage7') + +#========================== +# subset selected lineages +#========================== +df_lin = subset(my_df, subset = lineage %in% sel_lineages) +table(df_lin$lineage) + +#{RESULT: Total number of samples for lineage} +sum(table(df_lin$lineage)) + +#{RESULT: No of samples within lineage} +table(df_lin$lineage) + +#{Result: No. of unique mutations the 4 lineages contribute to} +length(unique(df_lin$mutationinformation)) + +u2 = unique(my_df$mutationinformation) +u = unique(df_lin$mutationinformation) + +#{Result:Muts not present within selected lineages} +check = u2[!u2%in%u]; print(check) + +# workaround to make labels appear nicely for in otherwise cases +#================== +# lineage: labels +# from "plyr" +#================== +#{Result:No of samples in selected lineages} +table(df_lin$lineage) + +df_lin$lineage_labels = mapvalues(df_lin$lineage + , from = c("lineage1","lineage2", "lineage3", "lineage4") + , to = c("Lineage 1", "Lineage 2", "Lineage 3", "Lineage 4")) +table(df_lin$lineage_labels) + +table(df_lin$lineage_labels) == table(df_lin$lineage) + +#======================== +# mutation_info: labels +#======================== +#{Result:No of DM and OM muts in selected lineages} +table(df_lin$mutation_info) + +df_lin$mutation_info_labels = ifelse(df_lin$mutation_info == dr_muts_col, "DM", "OM") +table(df_lin$mutation_info_labels) + +table(df_lin$mutation_info) == table(df_lin$mutation_info_labels) + + +#======================== +# duet_outcome: labels +#======================== +#{Result: No. of D and S mutations in selected lineages} +table(df_lin$duet_outcome) + +df_lin$duet_outcome_labels = ifelse(df_lin$duet_outcome == "Destabilising", "D", "S") +table(df_lin$duet_outcome_labels) + +table(df_lin$duet_outcome) == table(df_lin$duet_outcome_labels) + + +#======================= +# subset dr muts only +#======================= +#my_df_dr = subset(df_lin, mutation_info == dr_muts_col) +#table(my_df_dr$mutation_info) +#table(my_df_dr$lineage) + +#========================= +# subset other muts only +#========================= +#my_df_other = subset(df_lin, mutation_info == other_muts_col) +#table(my_df_other$mutation_info) +#table(my_df_other$lineage) + +######################################################################## +# end of data extraction and cleaning for plots # +######################################################################## + +#========================== +# Distribution plots +#============================ + +#%%%%%%%%%%%%%%%%%%%%%%%%% +# REASSIGNMENT +df <- df_lin +#%%%%%%%%%%%%%%%%%%%%%%%%% + +rm(df_lin) + +#****************** +# generate distribution plot of lineages +#****************** +# 2 : ggridges (good!) +my_ats = 15 # axis text size +my_als = 20 # axis label size +n_colours = length(unique(df$duet_scaled)) +my_palette <- colorRampPalette(c(mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2))(n = n_colours+1) + +#======================================= +# Plot 1: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!) +# else same as geom_density_ridges) +# x = duet_scaled +# y = duet_outcome +# fill = duet_scaled +# Facet: Lineage +#======================================= +# output individual svg +#plot_lineage_dist_duet_f paste0(plotdir,"/", "lineage_dist_duet_f.svg") +#plot_lineage_dist_duet_f +#svg(plot_lineage_dist_duet_f) + +p1 = ggplot(df, aes(x = duet_scaled + , y = duet_outcome))+ + geom_density_ridges_gradient(aes(fill = ..x..) + #, jittered_points = TRUE + , scale = 3 + , size = 0.3 ) + + facet_wrap( ~lineage_labels + # , scales = "free" + # , labeller = labeller(lineage = my_labels) + ) + + coord_cartesian( xlim = c(-1, 1)) + + scale_fill_gradientn(colours = my_palette + , name = "DUET" + #, breaks = c(-1, 0, 1) + #, labels = c(-1,0,1) + #, limits = c(-1,1) + ) + + theme(axis.text.x = element_text(size = my_ats + , angle = 90 + , hjust = 1 + , vjust = 0.4) + #, axis.text.y = element_blank() + , axis.text.y = element_text(size = my_ats) + , axis.title.x = element_text(size = my_ats) + , axis.title.y = element_blank() + , axis.ticks.y = element_blank() + , plot.title = element_blank() + , strip.text = element_text(size = my_als) + , legend.text = element_text(size = my_als-10) + #, legend.title = element_text(size = my_als-6) + , legend.title = element_blank() + , legend.position = c(-0.08, 0.41) + #, legend.direction = "horizontal" + #, legend.position = "left" +)+ + labs(x = "DUET") + +p1 + + +#p1_with_legend = p1 + guides(fill = guide_colourbar(label = FALSE)) + +#======================================= +# Plot 2: lineage dist: geom_density_ridges, allows alpha to be set +# x = duet_scaled +# y = lineage_labels +# fill = mutation_info +# NO FACET +#======================================= +# output svg +#plot_lineage_dist_duet_dm_om = paste0(plotdir,"/", "lineage_dist_duet_dm_om.svg") +#plot_lineage_dist_duet_dm_om +#svg(plot_lineage_dist_duet_dm_om) + +p2 = ggplot(df, aes(x = duet_scaled + , y = lineage_labels))+ + geom_density_ridges(aes(fill = factor(mutation_info_labels)) + , scale = 3 + , size = 0.3 + , alpha = 0.8) + + coord_cartesian( xlim = c(-1, 1)) + + scale_fill_manual(values = c("#E69F00", "#999999")) + + theme(axis.text.x = element_text(size = my_ats + , angle = 90 + , hjust = 1 + , vjust = 0.4) + , axis.text.y = element_text(size = my_ats) + , axis.title.x = element_text(size = my_ats) + , axis.title.y = element_blank() + , axis.ticks.y = element_blank() + , plot.title = element_blank() + , strip.text = element_text(size = my_als) + , legend.text = element_text(size = my_als-4) + , legend.title = element_text(size = my_als-4) + , legend.position = c(0.8, 0.9)) + + labs(x = "DUET" + , fill = "Mutation class") # legend title + +p2 + +#======================================= +# Plot 3: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!) +# else same as geom_density_ridges) +# x = duet_scaled +# y = lineage_labels +# fill = duet_scaled +# NO FACET (nf) +#======================================= +# output individual svg +#plot_lineage_dist_duet_nf = paste0(plotdir,"/", "lineage_dist_duet_nf.svg") +#plot_lineage_dist_duet_nf +#svg(plot_lineage_dist_duet_nf) + +p3 = ggplot(df, aes(x = duet_scaled + , y = lineage_labels))+ + geom_density_ridges_gradient(aes(fill = ..x..) + #, jittered_points = TRUE + , scale = 3 + , size = 0.3 ) + + coord_cartesian( xlim = c(-1, 1)) + + scale_fill_gradientn(colours = my_palette, name = "DUET") + + theme(axis.text.x = element_text(size = my_ats + , angle = 90 + , hjust = 1 + , vjust = 0.4) + + , axis.text.y = element_text(size = my_ats) + , axis.title.x = element_text(size = my_ats) + , axis.title.y = element_blank() + , axis.ticks.y = element_blank() + , plot.title = element_blank() + , strip.text = element_text(size = my_als) + , legend.text = element_text(size = my_als-10) + , legend.title = element_text(size = my_als-3) + , legend.position = c(0.8, 0.8)) + + #, legend.direction = "horizontal")+ + #, legend.position = "top")+ + labs(x = "DUET") + +p3 + +######################################################################## +#============== +# combine plots +#=============== +# 1) without labels +plot_lineage_dist_combined_dm_om +svg(plot_lineage_dist_combined_dm_om, width = 12, height = 6) + +OutPlot1 = cowplot::plot_grid(p1, p2 + , rel_widths = c(0.5/2, 0.5/2)) + +print(OutPlot1) +dev.off() + + +# 2) with labels +plot_lineage_dist_combined_dm_om_L +svg(plot_lineage_dist_combined_dm_om_L, width = 12, height = 6) + +OutPlot2 = cowplot::plot_grid(p1, p2 + #, labels = c("(a)", "(b)") + , labels = "AUTO" + #, label_x = -0.045, label_y = 0.92 + #, hjust = -0.7, vjust = -0.5 + #, align = "h" + , rel_widths = c(0.5/2, 0.5/2) + , label_size = my_als) + +print(OutPlot2) +dev.off() + +############################################################################## diff --git a/scripts/plotting/other_plots_data.R b/scripts/plotting/other_plots_data.R new file mode 100644 index 0000000..df5c1e3 --- /dev/null +++ b/scripts/plotting/other_plots_data.R @@ -0,0 +1,301 @@ +#!/usr/bin/env Rscript +######################################################### +# TASK: producing boxplots for dr and other muts + +######################################################### +#======================================================================= +# working dir and loading libraries +getwd() +setwd("~/git/LSHTM_analysis/scripts/plotting") +getwd() + +#source("Header_TT.R") +library(ggplot2) +library(data.table) +library(dplyr) +library(tidyverse) +source("combining_dfs_plotting.R") + +rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig + , merged_df3_comp, merged_df3_comp_lig + , my_df_u, my_df_u_lig) + + +cols_to_select = c("mutation", "mutationinformation" + , "wild_type", "position", "mutant_type" + , "mutation_info") + +merged_df3_short = merged_df3[, cols_to_select] + +# write merged_df3 to generate structural figure +write.csv(merged_df3_short, "merged_df3_short.csv") + +#======================================================================== +#%%%%%%%%%%%%%%%%%%% +# REASSIGNMENT: PS +#%%%%%%%%%%%%%%%%%%%% +df_ps = merged_df3 + +#============================ +# adding foldx scaled values +# scale data b/w -1 and 1 +#============================ +n = which(colnames(df_ps) == "ddg"); n + +my_min = min(df_ps[,n]); my_min +my_max = max(df_ps[,n]); my_max + +df_ps$foldx_scaled = ifelse(df_ps[,n] < 0 + , df_ps[,n]/abs(my_min) + , df_ps[,n]/my_max) +# sanity check +my_min = min(df_ps$foldx_scaled); my_min +my_max = max(df_ps$foldx_scaled); my_max + +if (my_min == -1 && my_max == 1){ + cat("PASS: foldx ddg successfully scaled b/w -1 and 1" + , "\nProceeding with assigning foldx outcome category") +}else{ + cat("FAIL: could not scale foldx ddg values" + , "Aborting!") +} + +#================================ +# adding foldx outcome category +# ddg<0 = "Stabilising" (-ve) +#================================= + +c1 = table(df_ps$ddg < 0) +df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising") +c2 = table(df_ps$ddg < 0) + +if ( all(c1 == c2) ){ + cat("PASS: foldx outcome successfully created") +}else{ + cat("FAIL: foldx outcome could not be created. Aborting!") + exit() +} +#======================================================================= +# name tidying +df_ps$mutation_info = as.factor(df_ps$mutation_info) +df_ps$duet_outcome = as.factor(df_ps$duet_outcome) +df_ps$foldx_outcome = as.factor(df_ps$foldx_outcome) +df_ps$ligand_outcome = as.factor(df_ps$ligand_outcome) + +# check +table(df_ps$mutation_info) + + # further checks to make sure dr and other muts are indeed unique +dr_muts = df_ps[df_ps$mutation_info == dr_muts_col,] +dr_muts_names = unique(dr_muts$mutation) + +other_muts = df_ps[df_ps$mutation_info == other_muts_col,] +other_muts_names = unique(other_muts$mutation) + +if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) && + table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){ + cat("PASS: dr and other muts are indeed unique") +}else{ + cat("FAIL: dr adn others muts are NOT unique!") + quit() +} + + +#%%%%%%%%%%%%%%%%%%% +# REASSIGNMENT: LIG +#%%%%%%%%%%%%%%%%%%%% + +df_lig = merged_df3_lig + +# name tidying +df_lig$mutation_info = as.factor(df_lig$mutation_info) +df_lig$duet_outcome = as.factor(df_lig$duet_outcome) +#df_lig$ligand_outcome = as.factor(df_lig$ligand_outcome) + +# check +table(df_lig$mutation_info) + +#======================================================================== +#=========== +# Data: ps +#=========== +# keep similar dtypes cols together +cols_to_select_ps = c("mutationinformation", "mutation", "position", "mutation_info" + , "duet_outcome" + + , "duet_scaled" + , "ligand_distance" + , "asa" + , "rsa" + , "rd_values" + , "kd_values") + +df_wf_ps = df_ps[, cols_to_select_ps] + +pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps + +expected_rows_lf_ps = nrow(df_wf_ps) * (length(df_wf_ps) - length(pivot_cols_ps)) +expected_rows_lf_ps + +# LF data: duet +df_lf_ps = gather(df_wf_ps, param_type, param_value, duet_scaled:kd_values, factor_key=TRUE) + +if (nrow(df_lf_ps) == expected_rows_lf_ps){ + cat("PASS: long format data created for duet") +}else{ + cat("FAIL: long format data could not be created for duet") + exit() +} + +str(df_wf_ps) +str(df_lf_ps) + +# assign pretty labels: param_type +levels(df_lf_ps$param_type); table(df_lf_ps$param_type) + +ligand_dist_colname = paste0("Distance to ligand (", angstroms_symbol, ")") +ligand_dist_colname + +duet_stability_name = paste0(delta_symbol, delta_symbol, "G") +duet_stability_name + +#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- "Stability" +levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- duet_stability_name +#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- "Ligand Distance" +levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- ligand_dist_colname +levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="asa"] <- "ASA" +levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rsa"] <- "RSA" +levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rd_values"] <- "RD" +levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="kd_values"] <- "KD" +# check +levels(df_lf_ps$param_type); table(df_lf_ps$param_type) + +# assign pretty labels: mutation_info +levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info) +sum(table(df_lf_ps$mutation_info)) == nrow(df_lf_ps) + +levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==dr_muts_col] <- "DM" +levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==other_muts_col] <- "OM" +# check +levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info) + +############################################################################ + +#=========== +# LF data: LIG +#=========== +# keep similar dtypes cols together +cols_to_select_lig = c("mutationinformation", "mutation", "position", "mutation_info" + , "ligand_outcome" + + , "affinity_scaled" + #, "ligand_distance" + , "asa" + , "rsa" + , "rd_values" + , "kd_values") + +df_wf_lig = df_lig[, cols_to_select_lig] + +pivot_cols_lig = cols_to_select_lig[1:5]; pivot_cols_lig + +expected_rows_lf_lig = nrow(df_wf_lig) * (length(df_wf_lig) - length(pivot_cols_lig)) +expected_rows_lf_lig + +# LF data: foldx +df_lf_lig = gather(df_wf_lig, param_type, param_value, affinity_scaled:kd_values, factor_key=TRUE) + +if (nrow(df_lf_lig) == expected_rows_lf_lig){ + cat("PASS: long format data created for foldx") +}else{ + cat("FAIL: long format data could not be created for foldx") + exit() +} + +# assign pretty labels: param_type +levels(df_lf_lig$param_type); table(df_lf_lig$param_type) + +levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="affinity_scaled"] <- "Ligand Affinity" +#levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="ligand_distance"] <- "Ligand Distance" +levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="asa"] <- "ASA" +levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rsa"] <- "RSA" +levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rd_values"] <- "RD" +levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="kd_values"] <- "KD" +#check +levels(df_lf_lig$param_type); table(df_lf_lig$param_type) + +# assign pretty labels: mutation_info +levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info) +sum(table(df_lf_lig$mutation_info)) == nrow(df_lf_lig) + +levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==dr_muts_col] <- "DM" +levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==other_muts_col] <- "OM" +# check +levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info) + +############################################################################# +#=========== +# Data: foldx +#=========== +# keep similar dtypes cols together +cols_to_select_foldx = c("mutationinformation", "mutation", "position", "mutation_info" + , "foldx_outcome" + + , "foldx_scaled") + #, "ligand_distance" + #, "asa" + #, "rsa" + #, "rd_values" + #, "kd_values") + + +df_wf_foldx = df_ps[, cols_to_select_foldx] + +pivot_cols_foldx = cols_to_select_foldx[1:5]; pivot_cols_foldx + +expected_rows_lf_foldx = nrow(df_wf_foldx) * (length(df_wf_foldx) - length(pivot_cols_foldx)) +expected_rows_lf_foldx + +# LF data: foldx +df_lf_foldx = gather(df_wf_foldx, param_type, param_value, foldx_scaled, factor_key=TRUE) + +if (nrow(df_lf_foldx) == expected_rows_lf_foldx){ + cat("PASS: long format data created for foldx") +}else{ + cat("FAIL: long format data could not be created for foldx") + exit() +} + +foldx_stability_name = paste0(delta_symbol, delta_symbol, "G") +foldx_stability_name + +# assign pretty labels: param type +levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type) + +#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- "Stability" +levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- foldx_stability_name +#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="ligand_distance"] <- "Ligand Distance" +#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="asa"] <- "ASA" +#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rsa"] <- "RSA" +#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rd_values"] <- "RD" +#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="kd_values"] <- "KD" +# check +levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type) + +# assign pretty labels: mutation_info +levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info) +sum(table(df_lf_foldx$mutation_info)) == nrow(df_lf_foldx) + +levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==dr_muts_col] <- "DM" +levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==other_muts_col] <- "OM" +# check +levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info) + +############################################################################ + +# clear excess variables +rm(cols_to_select_ps, cols_to_select_foldx, cols_to_select_lig + , pivot_cols_ps, pivot_cols_foldx, pivot_cols_lig + , expected_rows_lf_ps, expected_rows_lf_foldx, expected_rows_lf_lig + , my_max, my_min, na_count, na_count_df2, na_count_df3, dup_muts_nu + , c1, c2, n)