added untracked files in scripts/plotting
This commit is contained in:
parent
3ab6a3dbc1
commit
b66cf31219
4 changed files with 1205 additions and 0 deletions
214
scripts/plotting/lineage_basic_barplot.R
Normal file
214
scripts/plotting/lineage_basic_barplot.R
Normal file
|
@ -0,0 +1,214 @@
|
||||||
|
#!/usr/bin/env Rscript
|
||||||
|
getwd()
|
||||||
|
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
||||||
|
getwd()
|
||||||
|
#########################################################
|
||||||
|
# TASK: Basic lineage barplot showing numbers
|
||||||
|
|
||||||
|
# Output: Basic barplot with lineage samples and mut count
|
||||||
|
|
||||||
|
##########################################################
|
||||||
|
# Installing and loading required packages
|
||||||
|
##########################################################
|
||||||
|
source("Header_TT.R")
|
||||||
|
require(data.table)
|
||||||
|
source("combining_dfs_plotting.R")
|
||||||
|
# should return the following dfs, directories and variables
|
||||||
|
|
||||||
|
# PS combined:
|
||||||
|
# 1) merged_df2
|
||||||
|
# 2) merged_df2_comp
|
||||||
|
# 3) merged_df3
|
||||||
|
# 4) merged_df3_comp
|
||||||
|
|
||||||
|
# LIG combined:
|
||||||
|
# 5) merged_df2_lig
|
||||||
|
# 6) merged_df2_comp_lig
|
||||||
|
# 7) merged_df3_lig
|
||||||
|
# 8) merged_df3_comp_lig
|
||||||
|
|
||||||
|
# 9) my_df_u
|
||||||
|
# 10) my_df_u_lig
|
||||||
|
|
||||||
|
cat("Directories imported:"
|
||||||
|
, "\n===================="
|
||||||
|
, "\ndatadir:", datadir
|
||||||
|
, "\nindir:", indir
|
||||||
|
, "\noutdir:", outdir
|
||||||
|
, "\nplotdir:", plotdir)
|
||||||
|
|
||||||
|
cat("Variables imported:"
|
||||||
|
, "\n====================="
|
||||||
|
, "\ndrug:", drug
|
||||||
|
, "\ngene:", gene
|
||||||
|
, "\ngene_match:", gene_match
|
||||||
|
, "\nAngstrom symbol:", angstroms_symbol
|
||||||
|
, "\nNo. of duplicated muts:", dup_muts_nu
|
||||||
|
, "\nNA count for ORs:", na_count
|
||||||
|
, "\nNA count in df2:", na_count_df2
|
||||||
|
, "\nNA count in df3:", na_count_df3
|
||||||
|
, "\ndr_muts_col:", dr_muts_col
|
||||||
|
, "\nother_muts_col:", other_muts_col
|
||||||
|
, "\ndrtype_col:", resistance_col)
|
||||||
|
|
||||||
|
|
||||||
|
#===========
|
||||||
|
# input
|
||||||
|
#===========
|
||||||
|
# output of combining_dfs_plotting.R
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
# plot 1
|
||||||
|
basic_bp_lineage = "basic_lineage_barplot.svg"
|
||||||
|
plot_basic_bp_lineage = paste0(plotdir,"/", basic_bp_lineage)
|
||||||
|
|
||||||
|
#=======================================================================
|
||||||
|
#================
|
||||||
|
# Data for plots:
|
||||||
|
# you need merged_df2, comprehensive one
|
||||||
|
# since this has one-many relationship
|
||||||
|
# i.e the same SNP can belong to multiple lineages
|
||||||
|
#================
|
||||||
|
# REASSIGNMENT as necessary
|
||||||
|
my_df = merged_df2
|
||||||
|
|
||||||
|
# clear excess variable
|
||||||
|
rm(merged_df2_comp, merged_df3, merged_df3_comp)
|
||||||
|
|
||||||
|
# quick checks
|
||||||
|
colnames(my_df)
|
||||||
|
str(my_df)
|
||||||
|
|
||||||
|
# Ensure correct data type in columns to plot: need to be factor
|
||||||
|
is.factor(my_df$lineage)
|
||||||
|
my_df$lineage = as.factor(my_df$lineage)
|
||||||
|
is.factor(my_df$lineage)
|
||||||
|
|
||||||
|
#==========================
|
||||||
|
# Plot: Lineage barplot
|
||||||
|
# x = lineage y = No. of samples
|
||||||
|
# col = Lineage
|
||||||
|
# fill = lineage
|
||||||
|
#============================
|
||||||
|
table(my_df$lineage)
|
||||||
|
as.data.frame(table(my_df$lineage))
|
||||||
|
|
||||||
|
#=============
|
||||||
|
# Data for plots
|
||||||
|
#=============
|
||||||
|
# REASSIGNMENT
|
||||||
|
df <- my_df
|
||||||
|
|
||||||
|
rm(my_df)
|
||||||
|
|
||||||
|
# get freq count of positions so you can subset freq<1
|
||||||
|
#setDT(df)[, lineage_count := .N, by = .(lineage)]
|
||||||
|
|
||||||
|
#******************
|
||||||
|
# generate plot: barplot of mutation by lineage
|
||||||
|
#******************
|
||||||
|
sel_lineages = c("lineage1"
|
||||||
|
, "lineage2"
|
||||||
|
, "lineage3"
|
||||||
|
, "lineage4"
|
||||||
|
#, "lineage5"
|
||||||
|
#, "lineage6"
|
||||||
|
#, "lineage7"
|
||||||
|
)
|
||||||
|
|
||||||
|
df_lin = subset(df, subset = lineage %in% sel_lineages)
|
||||||
|
|
||||||
|
# Create df with lineage inform & no. of unique mutations
|
||||||
|
# per lineage and total samples within lineage
|
||||||
|
# this is essentially barplot with two y axis
|
||||||
|
|
||||||
|
bar = bar = as.data.frame(sel_lineages) #4, 1
|
||||||
|
total_snps_u = NULL
|
||||||
|
total_samples = NULL
|
||||||
|
|
||||||
|
for (i in sel_lineages){
|
||||||
|
#print(i)
|
||||||
|
curr_total = length(unique(df$id)[df$lineage==i])
|
||||||
|
total_samples = c(total_samples, curr_total)
|
||||||
|
print(total_samples)
|
||||||
|
|
||||||
|
foo = df[df$lineage==i,]
|
||||||
|
print(paste0(i, "======="))
|
||||||
|
print(length(unique(foo$mutationinformation)))
|
||||||
|
curr_count = length(unique(foo$mutationinformation))
|
||||||
|
|
||||||
|
total_snps_u = c(total_snps_u, curr_count)
|
||||||
|
}
|
||||||
|
|
||||||
|
print(total_snps_u)
|
||||||
|
bar$num_snps_u = total_snps_u
|
||||||
|
bar$total_samples = total_samples
|
||||||
|
bar
|
||||||
|
|
||||||
|
#*****************
|
||||||
|
# generate plot: lineage barplot with two y-axis
|
||||||
|
#https://stackoverflow.com/questions/13035295/overlay-bar-graphs-in-ggplot2
|
||||||
|
#*****************
|
||||||
|
|
||||||
|
y1 = bar$num_snps_u
|
||||||
|
y2 = bar$total_samples
|
||||||
|
x = sel_lineages
|
||||||
|
|
||||||
|
to_plot = data.frame(x = x
|
||||||
|
, y1 = y1
|
||||||
|
, y2 = y2)
|
||||||
|
to_plot
|
||||||
|
|
||||||
|
# FIXME later: will be depricated!
|
||||||
|
melted = melt(to_plot, id = "x")
|
||||||
|
melted
|
||||||
|
|
||||||
|
|
||||||
|
svg(plot_basic_bp_lineage)
|
||||||
|
|
||||||
|
my_ats = 20 # axis text size
|
||||||
|
my_als = 22 # axis label size
|
||||||
|
|
||||||
|
g = ggplot(melted, aes(x = x
|
||||||
|
, y = value
|
||||||
|
, fill = variable))
|
||||||
|
|
||||||
|
printFile = g + geom_bar(stat = "identity"
|
||||||
|
, position = position_stack(reverse = TRUE)
|
||||||
|
, alpha=.75
|
||||||
|
, colour='grey75') +
|
||||||
|
theme(axis.text.x = element_text(size = my_ats)
|
||||||
|
, axis.text.y = element_text(size = my_ats
|
||||||
|
#, angle = 30
|
||||||
|
, hjust = 1
|
||||||
|
, vjust = 0)
|
||||||
|
, axis.title.x = element_text(size = my_als
|
||||||
|
, colour = 'black')
|
||||||
|
, axis.title.y = element_text(size = my_als
|
||||||
|
, colour = 'black')
|
||||||
|
, legend.position = "top"
|
||||||
|
, legend.text = element_text(size = my_als)) +
|
||||||
|
#geom_text() +
|
||||||
|
geom_label(aes(label = value)
|
||||||
|
, size = 5
|
||||||
|
, hjust = 0.5
|
||||||
|
, vjust = 0.5
|
||||||
|
, colour = 'black'
|
||||||
|
, show.legend = FALSE
|
||||||
|
#, check_overlap = TRUE
|
||||||
|
, position = position_stack(reverse = T)) +
|
||||||
|
labs(title = ''
|
||||||
|
, x = ''
|
||||||
|
, y = "Number"
|
||||||
|
, fill = 'Variable'
|
||||||
|
, colour = 'black') +
|
||||||
|
scale_fill_manual(values = c('grey50', 'gray75')
|
||||||
|
, name=''
|
||||||
|
, labels=c('Mutations', 'Total Samples')) +
|
||||||
|
scale_x_discrete(breaks = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
|
||||||
|
, labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'))
|
||||||
|
|
||||||
|
print(printFile)
|
||||||
|
dev.off()
|
303
scripts/plotting/lineage_dist_combined_PS.R
Normal file
303
scripts/plotting/lineage_dist_combined_PS.R
Normal file
|
@ -0,0 +1,303 @@
|
||||||
|
#!/usr/bin/env Rscript
|
||||||
|
#########################################################
|
||||||
|
# TASK: Lineage dist plots: ggridges
|
||||||
|
|
||||||
|
# Output: 2 SVGs for PS stability
|
||||||
|
|
||||||
|
# 1) all muts
|
||||||
|
# 2) dr_muts
|
||||||
|
|
||||||
|
##########################################################
|
||||||
|
# Installing and loading required packages
|
||||||
|
##########################################################
|
||||||
|
getwd()
|
||||||
|
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
||||||
|
getwd()
|
||||||
|
|
||||||
|
source("Header_TT.R")
|
||||||
|
library(ggridges)
|
||||||
|
source("combining_dfs_plotting.R")
|
||||||
|
# PS combined:
|
||||||
|
# 1) merged_df2
|
||||||
|
# 2) merged_df2_comp
|
||||||
|
# 3) merged_df3
|
||||||
|
# 4) merged_df3_comp
|
||||||
|
|
||||||
|
# LIG combined:
|
||||||
|
# 5) merged_df2_lig
|
||||||
|
# 6) merged_df2_comp_lig
|
||||||
|
# 7) merged_df3_lig
|
||||||
|
# 8) merged_df3_comp_lig
|
||||||
|
|
||||||
|
# 9) my_df_u
|
||||||
|
# 10) my_df_u_lig
|
||||||
|
|
||||||
|
cat("Directories imported:"
|
||||||
|
, "\n===================="
|
||||||
|
, "\ndatadir:", datadir
|
||||||
|
, "\nindir:", indir
|
||||||
|
, "\noutdir:", outdir
|
||||||
|
, "\nplotdir:", plotdir)
|
||||||
|
|
||||||
|
cat("Variables imported:"
|
||||||
|
, "\n====================="
|
||||||
|
, "\ndrug:", drug
|
||||||
|
, "\ngene:", gene
|
||||||
|
, "\ngene_match:", gene_match
|
||||||
|
, "\nAngstrom symbol:", angstroms_symbol
|
||||||
|
, "\nNo. of duplicated muts:", dup_muts_nu
|
||||||
|
, "\nNA count for ORs:", na_count
|
||||||
|
, "\nNA count in df2:", na_count_df2
|
||||||
|
, "\nNA count in df3:", na_count_df3
|
||||||
|
, "\ndr_muts_col:", dr_muts_col
|
||||||
|
, "\nother_muts_col:", other_muts_col
|
||||||
|
, "\ndrtype_col:", resistance_col)
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
lineage_dist_combined = "lineage_dist_combined_PS.svg"
|
||||||
|
plot_lineage_dist_combined = paste0(plotdir,"/", lineage_dist_combined)
|
||||||
|
#========================================================================
|
||||||
|
|
||||||
|
###########################
|
||||||
|
# Data for plots
|
||||||
|
# you need merged_df2 or merged_df2_comp
|
||||||
|
# since this is one-many relationship
|
||||||
|
# i.e the same SNP can belong to multiple lineages
|
||||||
|
# using the _comp dataset means
|
||||||
|
# we lose some muts and at this level, we should use
|
||||||
|
# as much info as available, hence use df with NA
|
||||||
|
###########################
|
||||||
|
# REASSIGNMENT
|
||||||
|
my_df = merged_df2
|
||||||
|
|
||||||
|
# delete variables not required
|
||||||
|
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||||
|
|
||||||
|
# quick checks
|
||||||
|
colnames(my_df)
|
||||||
|
str(my_df)
|
||||||
|
|
||||||
|
# Ensure correct data type in columns to plot: need to be factor
|
||||||
|
is.factor(my_df$lineage)
|
||||||
|
my_df$lineage = as.factor(my_df$lineage)
|
||||||
|
is.factor(my_df$lineage)
|
||||||
|
|
||||||
|
table(my_df$mutation_info)
|
||||||
|
|
||||||
|
# subset df with dr muts only
|
||||||
|
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
|
||||||
|
table(my_df_dr$mutation_info)
|
||||||
|
|
||||||
|
########################################################################
|
||||||
|
# end of data extraction and cleaning for plots #
|
||||||
|
########################################################################
|
||||||
|
|
||||||
|
#==========================
|
||||||
|
# Plot 1: ALL Muts
|
||||||
|
# x = mcsm_values, y = dist
|
||||||
|
# fill = stability
|
||||||
|
#============================
|
||||||
|
|
||||||
|
my_plot_name = 'lineage_dist_PS.svg'
|
||||||
|
|
||||||
|
plot_lineage_duet = paste0(plotdir,"/", my_plot_name)
|
||||||
|
|
||||||
|
#===================
|
||||||
|
# Data for plots
|
||||||
|
#===================
|
||||||
|
table(my_df$lineage); str(my_df$lineage)
|
||||||
|
|
||||||
|
# subset only lineages1-4
|
||||||
|
sel_lineages = c("lineage1"
|
||||||
|
, "lineage2"
|
||||||
|
, "lineage3"
|
||||||
|
, "lineage4"
|
||||||
|
#, "lineage5"
|
||||||
|
#, "lineage6"
|
||||||
|
#, "lineage7"
|
||||||
|
)
|
||||||
|
|
||||||
|
# uncomment as necessary
|
||||||
|
df_lin = subset(my_df, subset = lineage %in% sel_lineages )
|
||||||
|
table(df_lin$lineage)
|
||||||
|
|
||||||
|
# refactor
|
||||||
|
df_lin$lineage = factor(df_lin$lineage)
|
||||||
|
|
||||||
|
sum(table(df_lin$lineage)) #{RESULT: Total number of samples for lineage}
|
||||||
|
|
||||||
|
table(df_lin$lineage)#{RESULT: No of samples within lineage}
|
||||||
|
|
||||||
|
length(unique(df_lin$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||||
|
|
||||||
|
length(df_lin$mutationinformation)
|
||||||
|
|
||||||
|
u2 = unique(my_df$mutationinformation)
|
||||||
|
u = unique(df_lin$mutationinformation)
|
||||||
|
check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages}
|
||||||
|
|
||||||
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
# REASSIGNMENT
|
||||||
|
df <- df_lin
|
||||||
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
rm(df_lin)
|
||||||
|
|
||||||
|
#******************
|
||||||
|
# generate distribution plot of lineages
|
||||||
|
#******************
|
||||||
|
# 2 : ggridges (good!)
|
||||||
|
my_ats = 15 # axis text size
|
||||||
|
my_als = 20 # axis label size
|
||||||
|
|
||||||
|
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'
|
||||||
|
#, 'Lineage 5', 'Lineage 6', 'Lineage 7'
|
||||||
|
)
|
||||||
|
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4'
|
||||||
|
# , 'lineage5', 'lineage6', 'lineage7'
|
||||||
|
)
|
||||||
|
# check plot name
|
||||||
|
plot_lineage_duet
|
||||||
|
|
||||||
|
# output svg
|
||||||
|
#svg(plot_lineage_duet)
|
||||||
|
p1 = ggplot(df, aes(x = duet_scaled
|
||||||
|
, y = duet_outcome))+
|
||||||
|
|
||||||
|
#printFile=geom_density_ridges_gradient(
|
||||||
|
geom_density_ridges_gradient(aes(fill = ..x..)
|
||||||
|
#, jittered_points = TRUE
|
||||||
|
, scale = 3
|
||||||
|
, size = 0.3 ) +
|
||||||
|
facet_wrap( ~lineage
|
||||||
|
, scales = "free"
|
||||||
|
#, switch = 'x'
|
||||||
|
, labeller = labeller(lineage = my_labels) ) +
|
||||||
|
coord_cartesian( xlim = c(-1, 1)) +
|
||||||
|
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
|
||||||
|
, name = "DUET" ) +
|
||||||
|
theme(axis.text.x = element_text(size = my_ats
|
||||||
|
, angle = 90
|
||||||
|
, hjust = 1
|
||||||
|
, vjust = 0.4)
|
||||||
|
|
||||||
|
, axis.text.y = element_blank()
|
||||||
|
, axis.title.x = element_blank()
|
||||||
|
, axis.title.y = element_blank()
|
||||||
|
, axis.ticks.y = element_blank()
|
||||||
|
, plot.title = element_blank()
|
||||||
|
, strip.text = element_text(size = my_als)
|
||||||
|
, legend.text = element_text(size = my_als-5)
|
||||||
|
, legend.title = element_text(size = my_als)
|
||||||
|
)
|
||||||
|
|
||||||
|
print(p1)
|
||||||
|
#dev.off()
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# lineage distribution plot for dr_muts
|
||||||
|
#######################################################################
|
||||||
|
|
||||||
|
#==========================
|
||||||
|
# Plot 2: dr muts ONLY
|
||||||
|
# x = mcsm_values, y = dist
|
||||||
|
# fill = stability
|
||||||
|
#============================
|
||||||
|
|
||||||
|
my_plot_name_dr = 'lineage_dist_dr_muts_PS.svg'
|
||||||
|
|
||||||
|
plot_lineage_dr_duet = paste0(plotdir,"/", my_plot_name_dr)
|
||||||
|
|
||||||
|
#===================
|
||||||
|
# Data for plots
|
||||||
|
#===================
|
||||||
|
table(my_df_dr$lineage); str(my_df_dr$lineage)
|
||||||
|
|
||||||
|
# uncomment as necessary
|
||||||
|
df_lin_dr = subset(my_df_dr, subset = lineage %in% sel_lineages)
|
||||||
|
table(df_lin_dr$lineage)
|
||||||
|
|
||||||
|
# refactor
|
||||||
|
df_lin_dr$lineage = factor(df_lin_dr$lineage)
|
||||||
|
|
||||||
|
sum(table(df_lin_dr$lineage)) #{RESULT: Total number of samples for lineage}
|
||||||
|
|
||||||
|
table(df_lin_dr$lineage)#{RESULT: No of samples within lineage}
|
||||||
|
|
||||||
|
length(unique(df_lin_dr$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||||
|
|
||||||
|
length(df_lin_dr$mutationinformation)
|
||||||
|
|
||||||
|
u2 = unique(my_df_dr$mutationinformation)
|
||||||
|
u = unique(df_lin_dr$mutationinformation)
|
||||||
|
check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages}
|
||||||
|
|
||||||
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
# REASSIGNMENT
|
||||||
|
df_dr <- df_lin_dr
|
||||||
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
rm(df_lin_dr)
|
||||||
|
|
||||||
|
#******************
|
||||||
|
# generate distribution plot of lineages
|
||||||
|
#******************
|
||||||
|
# 2 : ggridges (good!)
|
||||||
|
my_ats = 15 # axis text size
|
||||||
|
my_als = 20 # axis label size
|
||||||
|
|
||||||
|
|
||||||
|
# check plot name
|
||||||
|
plot_lineage_dr_duet
|
||||||
|
|
||||||
|
# output svg
|
||||||
|
#svg(plot_lineage_dr_duet)
|
||||||
|
p2 = ggplot(df_dr, aes(x = duet_scaled
|
||||||
|
, y = duet_outcome))+
|
||||||
|
|
||||||
|
geom_density_ridges_gradient(aes(fill = ..x..)
|
||||||
|
#, jittered_points = TRUE
|
||||||
|
, scale = 3
|
||||||
|
, size = 0.3) +
|
||||||
|
#geom_point(aes(size = or_mychisq))+
|
||||||
|
facet_wrap( ~lineage
|
||||||
|
, scales = "free"
|
||||||
|
#, switch = 'x'
|
||||||
|
, labeller = labeller(lineage = my_labels) ) +
|
||||||
|
coord_cartesian( xlim = c(-1, 1)
|
||||||
|
#, ylim = c(0, 6)
|
||||||
|
#, clip = "off"
|
||||||
|
) +
|
||||||
|
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
|
||||||
|
, name = "DUET" ) +
|
||||||
|
theme(axis.text.x = element_text(size = my_ats
|
||||||
|
, angle = 90
|
||||||
|
, hjust = 1
|
||||||
|
, vjust = 0.4)
|
||||||
|
, axis.text.y = element_blank()
|
||||||
|
, axis.title.x = element_blank()
|
||||||
|
, axis.title.y = element_blank()
|
||||||
|
, axis.ticks.y = element_blank()
|
||||||
|
, plot.title = element_blank()
|
||||||
|
, strip.text = element_text(size = my_als)
|
||||||
|
, legend.text = element_text(size = 10)
|
||||||
|
, legend.title = element_text(size = my_als)
|
||||||
|
#, legend.position = "none"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(p2)
|
||||||
|
#dev.off()
|
||||||
|
########################################################################
|
||||||
|
#==============
|
||||||
|
# combine plot
|
||||||
|
#===============
|
||||||
|
|
||||||
|
svg(plot_lineage_dist_combined, width = 12, height = 6)
|
||||||
|
|
||||||
|
printFile = cowplot::plot_grid(p1, p2
|
||||||
|
, label_size = my_als+10)
|
||||||
|
|
||||||
|
print(printFile)
|
||||||
|
dev.off()
|
387
scripts/plotting/lineage_dist_dm_om_combined_PS.R
Normal file
387
scripts/plotting/lineage_dist_dm_om_combined_PS.R
Normal file
|
@ -0,0 +1,387 @@
|
||||||
|
#!/usr/bin/env Rscript
|
||||||
|
#########################################################
|
||||||
|
# TASK: Lineage dist plots: ggridges
|
||||||
|
|
||||||
|
# Output: 2 SVGs for PS stability
|
||||||
|
|
||||||
|
# 1) all muts
|
||||||
|
# 2) dr_muts
|
||||||
|
|
||||||
|
##########################################################
|
||||||
|
# Installing and loading required packages
|
||||||
|
##########################################################
|
||||||
|
getwd()
|
||||||
|
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
||||||
|
getwd()
|
||||||
|
|
||||||
|
source("Header_TT.R")
|
||||||
|
library(ggridges)
|
||||||
|
library(plyr)
|
||||||
|
source("combining_dfs_plotting.R")
|
||||||
|
# PS combined:
|
||||||
|
# 1) merged_df2
|
||||||
|
# 2) merged_df2_comp
|
||||||
|
# 3) merged_df3
|
||||||
|
# 4) merged_df3_comp
|
||||||
|
|
||||||
|
# LIG combined:
|
||||||
|
# 5) merged_df2_lig
|
||||||
|
# 6) merged_df2_comp_lig
|
||||||
|
# 7) merged_df3_lig
|
||||||
|
# 8) merged_df3_comp_lig
|
||||||
|
|
||||||
|
# 9) my_df_u
|
||||||
|
# 10) my_df_u_lig
|
||||||
|
|
||||||
|
cat("Directories imported:"
|
||||||
|
, "\n===================="
|
||||||
|
, "\ndatadir:", datadir
|
||||||
|
, "\nindir:", indir
|
||||||
|
, "\noutdir:", outdir
|
||||||
|
, "\nplotdir:", plotdir)
|
||||||
|
|
||||||
|
cat("Variables imported:"
|
||||||
|
, "\n====================="
|
||||||
|
, "\ndrug:", drug
|
||||||
|
, "\ngene:", gene
|
||||||
|
, "\ngene_match:", gene_match
|
||||||
|
, "\nAngstrom symbol:", angstroms_symbol
|
||||||
|
, "\nNo. of duplicated muts:", dup_muts_nu
|
||||||
|
, "\nNA count for ORs:", na_count
|
||||||
|
, "\nNA count in df2:", na_count_df2
|
||||||
|
, "\nNA count in df3:", na_count_df3
|
||||||
|
, "\ndr_muts_col:", dr_muts_col
|
||||||
|
, "\nother_muts_col:", other_muts_col
|
||||||
|
, "\ndrtype_col:", resistance_col)
|
||||||
|
|
||||||
|
cat("cols imported:"
|
||||||
|
, mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2)
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
lineage_dist_combined_dm_om = "lineage_dist_combined_dm_om_PS.svg"
|
||||||
|
plot_lineage_dist_combined_dm_om = paste0(plotdir,"/", lineage_dist_combined_dm_om)
|
||||||
|
|
||||||
|
lineage_dist_combined_dm_om_L = "lineage_dist_combined_dm_om_PS_labelled.svg"
|
||||||
|
plot_lineage_dist_combined_dm_om_L = paste0(plotdir,"/", lineage_dist_combined_dm_om_L)
|
||||||
|
|
||||||
|
#========================================================================
|
||||||
|
|
||||||
|
###########################
|
||||||
|
# Data for plots
|
||||||
|
# you need merged_df2 or merged_df2_comp
|
||||||
|
# since this is one-many relationship
|
||||||
|
# i.e the same SNP can belong to multiple lineages
|
||||||
|
# using the _comp dataset means
|
||||||
|
# we lose some muts and at this level, we should use
|
||||||
|
# as much info as available, hence use df with NA
|
||||||
|
###########################
|
||||||
|
# REASSIGNMENT
|
||||||
|
my_df = merged_df2
|
||||||
|
|
||||||
|
# delete variables not required
|
||||||
|
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp
|
||||||
|
, merged_df2_lig, merged_df2_comp_lig, merged_df3_lig, merged_df3_comp_lig)
|
||||||
|
|
||||||
|
# quick checks
|
||||||
|
colnames(my_df)
|
||||||
|
str(my_df)
|
||||||
|
|
||||||
|
table(my_df$mutation_info)
|
||||||
|
|
||||||
|
#===================
|
||||||
|
# Data for plots
|
||||||
|
#===================
|
||||||
|
table(my_df$lineage); str(my_df$lineage)
|
||||||
|
|
||||||
|
# select lineages 1-4
|
||||||
|
sel_lineages = c("lineage1"
|
||||||
|
, "lineage2"
|
||||||
|
, "lineage3"
|
||||||
|
, "lineage4")
|
||||||
|
#, "lineage5"
|
||||||
|
#, "lineage6"
|
||||||
|
#, "lineage7")
|
||||||
|
|
||||||
|
# works nicely with facet wrap using labeller, but not otherwise
|
||||||
|
#my_labels = c('Lineage 1'
|
||||||
|
# , 'Lineage 2'
|
||||||
|
# , 'Lineage 3'
|
||||||
|
# , 'Lineage 4')
|
||||||
|
# #, 'Lineage 5'
|
||||||
|
# #, 'Lineage 6'
|
||||||
|
# #, 'Lineage 7')
|
||||||
|
|
||||||
|
#names(my_labels) = c('lineage1'
|
||||||
|
# , 'lineage2'
|
||||||
|
# , 'lineage3'
|
||||||
|
# , 'lineage4')
|
||||||
|
# #, 'lineage5'
|
||||||
|
# #, 'lineage6'
|
||||||
|
# #, 'lineage7')
|
||||||
|
|
||||||
|
#==========================
|
||||||
|
# subset selected lineages
|
||||||
|
#==========================
|
||||||
|
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
|
||||||
|
table(df_lin$lineage)
|
||||||
|
|
||||||
|
#{RESULT: Total number of samples for lineage}
|
||||||
|
sum(table(df_lin$lineage))
|
||||||
|
|
||||||
|
#{RESULT: No of samples within lineage}
|
||||||
|
table(df_lin$lineage)
|
||||||
|
|
||||||
|
#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||||
|
length(unique(df_lin$mutationinformation))
|
||||||
|
|
||||||
|
u2 = unique(my_df$mutationinformation)
|
||||||
|
u = unique(df_lin$mutationinformation)
|
||||||
|
|
||||||
|
#{Result:Muts not present within selected lineages}
|
||||||
|
check = u2[!u2%in%u]; print(check)
|
||||||
|
|
||||||
|
# workaround to make labels appear nicely for in otherwise cases
|
||||||
|
#==================
|
||||||
|
# lineage: labels
|
||||||
|
# from "plyr"
|
||||||
|
#==================
|
||||||
|
#{Result:No of samples in selected lineages}
|
||||||
|
table(df_lin$lineage)
|
||||||
|
|
||||||
|
df_lin$lineage_labels = mapvalues(df_lin$lineage
|
||||||
|
, from = c("lineage1","lineage2", "lineage3", "lineage4")
|
||||||
|
, to = c("Lineage 1", "Lineage 2", "Lineage 3", "Lineage 4"))
|
||||||
|
table(df_lin$lineage_labels)
|
||||||
|
|
||||||
|
table(df_lin$lineage_labels) == table(df_lin$lineage)
|
||||||
|
|
||||||
|
#========================
|
||||||
|
# mutation_info: labels
|
||||||
|
#========================
|
||||||
|
#{Result:No of DM and OM muts in selected lineages}
|
||||||
|
table(df_lin$mutation_info)
|
||||||
|
|
||||||
|
df_lin$mutation_info_labels = ifelse(df_lin$mutation_info == dr_muts_col, "DM", "OM")
|
||||||
|
table(df_lin$mutation_info_labels)
|
||||||
|
|
||||||
|
table(df_lin$mutation_info) == table(df_lin$mutation_info_labels)
|
||||||
|
|
||||||
|
|
||||||
|
#========================
|
||||||
|
# duet_outcome: labels
|
||||||
|
#========================
|
||||||
|
#{Result: No. of D and S mutations in selected lineages}
|
||||||
|
table(df_lin$duet_outcome)
|
||||||
|
|
||||||
|
df_lin$duet_outcome_labels = ifelse(df_lin$duet_outcome == "Destabilising", "D", "S")
|
||||||
|
table(df_lin$duet_outcome_labels)
|
||||||
|
|
||||||
|
table(df_lin$duet_outcome) == table(df_lin$duet_outcome_labels)
|
||||||
|
|
||||||
|
|
||||||
|
#=======================
|
||||||
|
# subset dr muts only
|
||||||
|
#=======================
|
||||||
|
#my_df_dr = subset(df_lin, mutation_info == dr_muts_col)
|
||||||
|
#table(my_df_dr$mutation_info)
|
||||||
|
#table(my_df_dr$lineage)
|
||||||
|
|
||||||
|
#=========================
|
||||||
|
# subset other muts only
|
||||||
|
#=========================
|
||||||
|
#my_df_other = subset(df_lin, mutation_info == other_muts_col)
|
||||||
|
#table(my_df_other$mutation_info)
|
||||||
|
#table(my_df_other$lineage)
|
||||||
|
|
||||||
|
########################################################################
|
||||||
|
# end of data extraction and cleaning for plots #
|
||||||
|
########################################################################
|
||||||
|
|
||||||
|
#==========================
|
||||||
|
# Distribution plots
|
||||||
|
#============================
|
||||||
|
|
||||||
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
# REASSIGNMENT
|
||||||
|
df <- df_lin
|
||||||
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
rm(df_lin)
|
||||||
|
|
||||||
|
#******************
|
||||||
|
# generate distribution plot of lineages
|
||||||
|
#******************
|
||||||
|
# 2 : ggridges (good!)
|
||||||
|
my_ats = 15 # axis text size
|
||||||
|
my_als = 20 # axis label size
|
||||||
|
n_colours = length(unique(df$duet_scaled))
|
||||||
|
my_palette <- colorRampPalette(c(mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2))(n = n_colours+1)
|
||||||
|
|
||||||
|
#=======================================
|
||||||
|
# Plot 1: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!)
|
||||||
|
# else same as geom_density_ridges)
|
||||||
|
# x = duet_scaled
|
||||||
|
# y = duet_outcome
|
||||||
|
# fill = duet_scaled
|
||||||
|
# Facet: Lineage
|
||||||
|
#=======================================
|
||||||
|
# output individual svg
|
||||||
|
#plot_lineage_dist_duet_f paste0(plotdir,"/", "lineage_dist_duet_f.svg")
|
||||||
|
#plot_lineage_dist_duet_f
|
||||||
|
#svg(plot_lineage_dist_duet_f)
|
||||||
|
|
||||||
|
p1 = ggplot(df, aes(x = duet_scaled
|
||||||
|
, y = duet_outcome))+
|
||||||
|
geom_density_ridges_gradient(aes(fill = ..x..)
|
||||||
|
#, jittered_points = TRUE
|
||||||
|
, scale = 3
|
||||||
|
, size = 0.3 ) +
|
||||||
|
facet_wrap( ~lineage_labels
|
||||||
|
# , scales = "free"
|
||||||
|
# , labeller = labeller(lineage = my_labels)
|
||||||
|
) +
|
||||||
|
coord_cartesian( xlim = c(-1, 1)) +
|
||||||
|
scale_fill_gradientn(colours = my_palette
|
||||||
|
, name = "DUET"
|
||||||
|
#, breaks = c(-1, 0, 1)
|
||||||
|
#, labels = c(-1,0,1)
|
||||||
|
#, limits = c(-1,1)
|
||||||
|
) +
|
||||||
|
theme(axis.text.x = element_text(size = my_ats
|
||||||
|
, angle = 90
|
||||||
|
, hjust = 1
|
||||||
|
, vjust = 0.4)
|
||||||
|
#, axis.text.y = element_blank()
|
||||||
|
, axis.text.y = element_text(size = my_ats)
|
||||||
|
, axis.title.x = element_text(size = my_ats)
|
||||||
|
, axis.title.y = element_blank()
|
||||||
|
, axis.ticks.y = element_blank()
|
||||||
|
, plot.title = element_blank()
|
||||||
|
, strip.text = element_text(size = my_als)
|
||||||
|
, legend.text = element_text(size = my_als-10)
|
||||||
|
#, legend.title = element_text(size = my_als-6)
|
||||||
|
, legend.title = element_blank()
|
||||||
|
, legend.position = c(-0.08, 0.41)
|
||||||
|
#, legend.direction = "horizontal"
|
||||||
|
#, legend.position = "left"
|
||||||
|
)+
|
||||||
|
labs(x = "DUET")
|
||||||
|
|
||||||
|
p1
|
||||||
|
|
||||||
|
|
||||||
|
#p1_with_legend = p1 + guides(fill = guide_colourbar(label = FALSE))
|
||||||
|
|
||||||
|
#=======================================
|
||||||
|
# Plot 2: lineage dist: geom_density_ridges, allows alpha to be set
|
||||||
|
# x = duet_scaled
|
||||||
|
# y = lineage_labels
|
||||||
|
# fill = mutation_info
|
||||||
|
# NO FACET
|
||||||
|
#=======================================
|
||||||
|
# output svg
|
||||||
|
#plot_lineage_dist_duet_dm_om = paste0(plotdir,"/", "lineage_dist_duet_dm_om.svg")
|
||||||
|
#plot_lineage_dist_duet_dm_om
|
||||||
|
#svg(plot_lineage_dist_duet_dm_om)
|
||||||
|
|
||||||
|
p2 = ggplot(df, aes(x = duet_scaled
|
||||||
|
, y = lineage_labels))+
|
||||||
|
geom_density_ridges(aes(fill = factor(mutation_info_labels))
|
||||||
|
, scale = 3
|
||||||
|
, size = 0.3
|
||||||
|
, alpha = 0.8) +
|
||||||
|
coord_cartesian( xlim = c(-1, 1)) +
|
||||||
|
scale_fill_manual(values = c("#E69F00", "#999999")) +
|
||||||
|
theme(axis.text.x = element_text(size = my_ats
|
||||||
|
, angle = 90
|
||||||
|
, hjust = 1
|
||||||
|
, vjust = 0.4)
|
||||||
|
, axis.text.y = element_text(size = my_ats)
|
||||||
|
, axis.title.x = element_text(size = my_ats)
|
||||||
|
, axis.title.y = element_blank()
|
||||||
|
, axis.ticks.y = element_blank()
|
||||||
|
, plot.title = element_blank()
|
||||||
|
, strip.text = element_text(size = my_als)
|
||||||
|
, legend.text = element_text(size = my_als-4)
|
||||||
|
, legend.title = element_text(size = my_als-4)
|
||||||
|
, legend.position = c(0.8, 0.9)) +
|
||||||
|
labs(x = "DUET"
|
||||||
|
, fill = "Mutation class") # legend title
|
||||||
|
|
||||||
|
p2
|
||||||
|
|
||||||
|
#=======================================
|
||||||
|
# Plot 3: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!)
|
||||||
|
# else same as geom_density_ridges)
|
||||||
|
# x = duet_scaled
|
||||||
|
# y = lineage_labels
|
||||||
|
# fill = duet_scaled
|
||||||
|
# NO FACET (nf)
|
||||||
|
#=======================================
|
||||||
|
# output individual svg
|
||||||
|
#plot_lineage_dist_duet_nf = paste0(plotdir,"/", "lineage_dist_duet_nf.svg")
|
||||||
|
#plot_lineage_dist_duet_nf
|
||||||
|
#svg(plot_lineage_dist_duet_nf)
|
||||||
|
|
||||||
|
p3 = ggplot(df, aes(x = duet_scaled
|
||||||
|
, y = lineage_labels))+
|
||||||
|
geom_density_ridges_gradient(aes(fill = ..x..)
|
||||||
|
#, jittered_points = TRUE
|
||||||
|
, scale = 3
|
||||||
|
, size = 0.3 ) +
|
||||||
|
coord_cartesian( xlim = c(-1, 1)) +
|
||||||
|
scale_fill_gradientn(colours = my_palette, name = "DUET") +
|
||||||
|
theme(axis.text.x = element_text(size = my_ats
|
||||||
|
, angle = 90
|
||||||
|
, hjust = 1
|
||||||
|
, vjust = 0.4)
|
||||||
|
|
||||||
|
, axis.text.y = element_text(size = my_ats)
|
||||||
|
, axis.title.x = element_text(size = my_ats)
|
||||||
|
, axis.title.y = element_blank()
|
||||||
|
, axis.ticks.y = element_blank()
|
||||||
|
, plot.title = element_blank()
|
||||||
|
, strip.text = element_text(size = my_als)
|
||||||
|
, legend.text = element_text(size = my_als-10)
|
||||||
|
, legend.title = element_text(size = my_als-3)
|
||||||
|
, legend.position = c(0.8, 0.8)) +
|
||||||
|
#, legend.direction = "horizontal")+
|
||||||
|
#, legend.position = "top")+
|
||||||
|
labs(x = "DUET")
|
||||||
|
|
||||||
|
p3
|
||||||
|
|
||||||
|
########################################################################
|
||||||
|
#==============
|
||||||
|
# combine plots
|
||||||
|
#===============
|
||||||
|
# 1) without labels
|
||||||
|
plot_lineage_dist_combined_dm_om
|
||||||
|
svg(plot_lineage_dist_combined_dm_om, width = 12, height = 6)
|
||||||
|
|
||||||
|
OutPlot1 = cowplot::plot_grid(p1, p2
|
||||||
|
, rel_widths = c(0.5/2, 0.5/2))
|
||||||
|
|
||||||
|
print(OutPlot1)
|
||||||
|
dev.off()
|
||||||
|
|
||||||
|
|
||||||
|
# 2) with labels
|
||||||
|
plot_lineage_dist_combined_dm_om_L
|
||||||
|
svg(plot_lineage_dist_combined_dm_om_L, width = 12, height = 6)
|
||||||
|
|
||||||
|
OutPlot2 = cowplot::plot_grid(p1, p2
|
||||||
|
#, labels = c("(a)", "(b)")
|
||||||
|
, labels = "AUTO"
|
||||||
|
#, label_x = -0.045, label_y = 0.92
|
||||||
|
#, hjust = -0.7, vjust = -0.5
|
||||||
|
#, align = "h"
|
||||||
|
, rel_widths = c(0.5/2, 0.5/2)
|
||||||
|
, label_size = my_als)
|
||||||
|
|
||||||
|
print(OutPlot2)
|
||||||
|
dev.off()
|
||||||
|
|
||||||
|
##############################################################################
|
301
scripts/plotting/other_plots_data.R
Normal file
301
scripts/plotting/other_plots_data.R
Normal file
|
@ -0,0 +1,301 @@
|
||||||
|
#!/usr/bin/env Rscript
|
||||||
|
#########################################################
|
||||||
|
# TASK: producing boxplots for dr and other muts
|
||||||
|
|
||||||
|
#########################################################
|
||||||
|
#=======================================================================
|
||||||
|
# working dir and loading libraries
|
||||||
|
getwd()
|
||||||
|
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||||
|
getwd()
|
||||||
|
|
||||||
|
#source("Header_TT.R")
|
||||||
|
library(ggplot2)
|
||||||
|
library(data.table)
|
||||||
|
library(dplyr)
|
||||||
|
library(tidyverse)
|
||||||
|
source("combining_dfs_plotting.R")
|
||||||
|
|
||||||
|
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
|
||||||
|
, merged_df3_comp, merged_df3_comp_lig
|
||||||
|
, my_df_u, my_df_u_lig)
|
||||||
|
|
||||||
|
|
||||||
|
cols_to_select = c("mutation", "mutationinformation"
|
||||||
|
, "wild_type", "position", "mutant_type"
|
||||||
|
, "mutation_info")
|
||||||
|
|
||||||
|
merged_df3_short = merged_df3[, cols_to_select]
|
||||||
|
|
||||||
|
# write merged_df3 to generate structural figure
|
||||||
|
write.csv(merged_df3_short, "merged_df3_short.csv")
|
||||||
|
|
||||||
|
#========================================================================
|
||||||
|
#%%%%%%%%%%%%%%%%%%%
|
||||||
|
# REASSIGNMENT: PS
|
||||||
|
#%%%%%%%%%%%%%%%%%%%%
|
||||||
|
df_ps = merged_df3
|
||||||
|
|
||||||
|
#============================
|
||||||
|
# adding foldx scaled values
|
||||||
|
# scale data b/w -1 and 1
|
||||||
|
#============================
|
||||||
|
n = which(colnames(df_ps) == "ddg"); n
|
||||||
|
|
||||||
|
my_min = min(df_ps[,n]); my_min
|
||||||
|
my_max = max(df_ps[,n]); my_max
|
||||||
|
|
||||||
|
df_ps$foldx_scaled = ifelse(df_ps[,n] < 0
|
||||||
|
, df_ps[,n]/abs(my_min)
|
||||||
|
, df_ps[,n]/my_max)
|
||||||
|
# sanity check
|
||||||
|
my_min = min(df_ps$foldx_scaled); my_min
|
||||||
|
my_max = max(df_ps$foldx_scaled); my_max
|
||||||
|
|
||||||
|
if (my_min == -1 && my_max == 1){
|
||||||
|
cat("PASS: foldx ddg successfully scaled b/w -1 and 1"
|
||||||
|
, "\nProceeding with assigning foldx outcome category")
|
||||||
|
}else{
|
||||||
|
cat("FAIL: could not scale foldx ddg values"
|
||||||
|
, "Aborting!")
|
||||||
|
}
|
||||||
|
|
||||||
|
#================================
|
||||||
|
# adding foldx outcome category
|
||||||
|
# ddg<0 = "Stabilising" (-ve)
|
||||||
|
#=================================
|
||||||
|
|
||||||
|
c1 = table(df_ps$ddg < 0)
|
||||||
|
df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising")
|
||||||
|
c2 = table(df_ps$ddg < 0)
|
||||||
|
|
||||||
|
if ( all(c1 == c2) ){
|
||||||
|
cat("PASS: foldx outcome successfully created")
|
||||||
|
}else{
|
||||||
|
cat("FAIL: foldx outcome could not be created. Aborting!")
|
||||||
|
exit()
|
||||||
|
}
|
||||||
|
#=======================================================================
|
||||||
|
# name tidying
|
||||||
|
df_ps$mutation_info = as.factor(df_ps$mutation_info)
|
||||||
|
df_ps$duet_outcome = as.factor(df_ps$duet_outcome)
|
||||||
|
df_ps$foldx_outcome = as.factor(df_ps$foldx_outcome)
|
||||||
|
df_ps$ligand_outcome = as.factor(df_ps$ligand_outcome)
|
||||||
|
|
||||||
|
# check
|
||||||
|
table(df_ps$mutation_info)
|
||||||
|
|
||||||
|
# further checks to make sure dr and other muts are indeed unique
|
||||||
|
dr_muts = df_ps[df_ps$mutation_info == dr_muts_col,]
|
||||||
|
dr_muts_names = unique(dr_muts$mutation)
|
||||||
|
|
||||||
|
other_muts = df_ps[df_ps$mutation_info == other_muts_col,]
|
||||||
|
other_muts_names = unique(other_muts$mutation)
|
||||||
|
|
||||||
|
if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) &&
|
||||||
|
table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){
|
||||||
|
cat("PASS: dr and other muts are indeed unique")
|
||||||
|
}else{
|
||||||
|
cat("FAIL: dr adn others muts are NOT unique!")
|
||||||
|
quit()
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#%%%%%%%%%%%%%%%%%%%
|
||||||
|
# REASSIGNMENT: LIG
|
||||||
|
#%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
df_lig = merged_df3_lig
|
||||||
|
|
||||||
|
# name tidying
|
||||||
|
df_lig$mutation_info = as.factor(df_lig$mutation_info)
|
||||||
|
df_lig$duet_outcome = as.factor(df_lig$duet_outcome)
|
||||||
|
#df_lig$ligand_outcome = as.factor(df_lig$ligand_outcome)
|
||||||
|
|
||||||
|
# check
|
||||||
|
table(df_lig$mutation_info)
|
||||||
|
|
||||||
|
#========================================================================
|
||||||
|
#===========
|
||||||
|
# Data: ps
|
||||||
|
#===========
|
||||||
|
# keep similar dtypes cols together
|
||||||
|
cols_to_select_ps = c("mutationinformation", "mutation", "position", "mutation_info"
|
||||||
|
, "duet_outcome"
|
||||||
|
|
||||||
|
, "duet_scaled"
|
||||||
|
, "ligand_distance"
|
||||||
|
, "asa"
|
||||||
|
, "rsa"
|
||||||
|
, "rd_values"
|
||||||
|
, "kd_values")
|
||||||
|
|
||||||
|
df_wf_ps = df_ps[, cols_to_select_ps]
|
||||||
|
|
||||||
|
pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps
|
||||||
|
|
||||||
|
expected_rows_lf_ps = nrow(df_wf_ps) * (length(df_wf_ps) - length(pivot_cols_ps))
|
||||||
|
expected_rows_lf_ps
|
||||||
|
|
||||||
|
# LF data: duet
|
||||||
|
df_lf_ps = gather(df_wf_ps, param_type, param_value, duet_scaled:kd_values, factor_key=TRUE)
|
||||||
|
|
||||||
|
if (nrow(df_lf_ps) == expected_rows_lf_ps){
|
||||||
|
cat("PASS: long format data created for duet")
|
||||||
|
}else{
|
||||||
|
cat("FAIL: long format data could not be created for duet")
|
||||||
|
exit()
|
||||||
|
}
|
||||||
|
|
||||||
|
str(df_wf_ps)
|
||||||
|
str(df_lf_ps)
|
||||||
|
|
||||||
|
# assign pretty labels: param_type
|
||||||
|
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
|
||||||
|
|
||||||
|
ligand_dist_colname = paste0("Distance to ligand (", angstroms_symbol, ")")
|
||||||
|
ligand_dist_colname
|
||||||
|
|
||||||
|
duet_stability_name = paste0(delta_symbol, delta_symbol, "G")
|
||||||
|
duet_stability_name
|
||||||
|
|
||||||
|
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- "Stability"
|
||||||
|
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- duet_stability_name
|
||||||
|
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- "Ligand Distance"
|
||||||
|
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- ligand_dist_colname
|
||||||
|
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="asa"] <- "ASA"
|
||||||
|
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rsa"] <- "RSA"
|
||||||
|
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rd_values"] <- "RD"
|
||||||
|
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="kd_values"] <- "KD"
|
||||||
|
# check
|
||||||
|
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
|
||||||
|
|
||||||
|
# assign pretty labels: mutation_info
|
||||||
|
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
|
||||||
|
sum(table(df_lf_ps$mutation_info)) == nrow(df_lf_ps)
|
||||||
|
|
||||||
|
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==dr_muts_col] <- "DM"
|
||||||
|
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==other_muts_col] <- "OM"
|
||||||
|
# check
|
||||||
|
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
|
||||||
|
|
||||||
|
############################################################################
|
||||||
|
|
||||||
|
#===========
|
||||||
|
# LF data: LIG
|
||||||
|
#===========
|
||||||
|
# keep similar dtypes cols together
|
||||||
|
cols_to_select_lig = c("mutationinformation", "mutation", "position", "mutation_info"
|
||||||
|
, "ligand_outcome"
|
||||||
|
|
||||||
|
, "affinity_scaled"
|
||||||
|
#, "ligand_distance"
|
||||||
|
, "asa"
|
||||||
|
, "rsa"
|
||||||
|
, "rd_values"
|
||||||
|
, "kd_values")
|
||||||
|
|
||||||
|
df_wf_lig = df_lig[, cols_to_select_lig]
|
||||||
|
|
||||||
|
pivot_cols_lig = cols_to_select_lig[1:5]; pivot_cols_lig
|
||||||
|
|
||||||
|
expected_rows_lf_lig = nrow(df_wf_lig) * (length(df_wf_lig) - length(pivot_cols_lig))
|
||||||
|
expected_rows_lf_lig
|
||||||
|
|
||||||
|
# LF data: foldx
|
||||||
|
df_lf_lig = gather(df_wf_lig, param_type, param_value, affinity_scaled:kd_values, factor_key=TRUE)
|
||||||
|
|
||||||
|
if (nrow(df_lf_lig) == expected_rows_lf_lig){
|
||||||
|
cat("PASS: long format data created for foldx")
|
||||||
|
}else{
|
||||||
|
cat("FAIL: long format data could not be created for foldx")
|
||||||
|
exit()
|
||||||
|
}
|
||||||
|
|
||||||
|
# assign pretty labels: param_type
|
||||||
|
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
|
||||||
|
|
||||||
|
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="affinity_scaled"] <- "Ligand Affinity"
|
||||||
|
#levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="ligand_distance"] <- "Ligand Distance"
|
||||||
|
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="asa"] <- "ASA"
|
||||||
|
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rsa"] <- "RSA"
|
||||||
|
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rd_values"] <- "RD"
|
||||||
|
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="kd_values"] <- "KD"
|
||||||
|
#check
|
||||||
|
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
|
||||||
|
|
||||||
|
# assign pretty labels: mutation_info
|
||||||
|
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
|
||||||
|
sum(table(df_lf_lig$mutation_info)) == nrow(df_lf_lig)
|
||||||
|
|
||||||
|
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==dr_muts_col] <- "DM"
|
||||||
|
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==other_muts_col] <- "OM"
|
||||||
|
# check
|
||||||
|
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
|
||||||
|
|
||||||
|
#############################################################################
|
||||||
|
#===========
|
||||||
|
# Data: foldx
|
||||||
|
#===========
|
||||||
|
# keep similar dtypes cols together
|
||||||
|
cols_to_select_foldx = c("mutationinformation", "mutation", "position", "mutation_info"
|
||||||
|
, "foldx_outcome"
|
||||||
|
|
||||||
|
, "foldx_scaled")
|
||||||
|
#, "ligand_distance"
|
||||||
|
#, "asa"
|
||||||
|
#, "rsa"
|
||||||
|
#, "rd_values"
|
||||||
|
#, "kd_values")
|
||||||
|
|
||||||
|
|
||||||
|
df_wf_foldx = df_ps[, cols_to_select_foldx]
|
||||||
|
|
||||||
|
pivot_cols_foldx = cols_to_select_foldx[1:5]; pivot_cols_foldx
|
||||||
|
|
||||||
|
expected_rows_lf_foldx = nrow(df_wf_foldx) * (length(df_wf_foldx) - length(pivot_cols_foldx))
|
||||||
|
expected_rows_lf_foldx
|
||||||
|
|
||||||
|
# LF data: foldx
|
||||||
|
df_lf_foldx = gather(df_wf_foldx, param_type, param_value, foldx_scaled, factor_key=TRUE)
|
||||||
|
|
||||||
|
if (nrow(df_lf_foldx) == expected_rows_lf_foldx){
|
||||||
|
cat("PASS: long format data created for foldx")
|
||||||
|
}else{
|
||||||
|
cat("FAIL: long format data could not be created for foldx")
|
||||||
|
exit()
|
||||||
|
}
|
||||||
|
|
||||||
|
foldx_stability_name = paste0(delta_symbol, delta_symbol, "G")
|
||||||
|
foldx_stability_name
|
||||||
|
|
||||||
|
# assign pretty labels: param type
|
||||||
|
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
|
||||||
|
|
||||||
|
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- "Stability"
|
||||||
|
levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- foldx_stability_name
|
||||||
|
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="ligand_distance"] <- "Ligand Distance"
|
||||||
|
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="asa"] <- "ASA"
|
||||||
|
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rsa"] <- "RSA"
|
||||||
|
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rd_values"] <- "RD"
|
||||||
|
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="kd_values"] <- "KD"
|
||||||
|
# check
|
||||||
|
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
|
||||||
|
|
||||||
|
# assign pretty labels: mutation_info
|
||||||
|
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
|
||||||
|
sum(table(df_lf_foldx$mutation_info)) == nrow(df_lf_foldx)
|
||||||
|
|
||||||
|
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==dr_muts_col] <- "DM"
|
||||||
|
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==other_muts_col] <- "OM"
|
||||||
|
# check
|
||||||
|
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
|
||||||
|
|
||||||
|
############################################################################
|
||||||
|
|
||||||
|
# clear excess variables
|
||||||
|
rm(cols_to_select_ps, cols_to_select_foldx, cols_to_select_lig
|
||||||
|
, pivot_cols_ps, pivot_cols_foldx, pivot_cols_lig
|
||||||
|
, expected_rows_lf_ps, expected_rows_lf_foldx, expected_rows_lf_lig
|
||||||
|
, my_max, my_min, na_count, na_count_df2, na_count_df3, dup_muts_nu
|
||||||
|
, c1, c2, n)
|
Loading…
Add table
Add a link
Reference in a new issue