saving work
This commit is contained in:
parent
d812835713
commit
b5777a17c9
3 changed files with 103 additions and 22 deletions
85
scripts/ml/combined_model/cm_logo_skf.py
Normal file → Executable file
85
scripts/ml/combined_model/cm_logo_skf.py
Normal file → Executable file
|
@ -9,6 +9,72 @@ import sys, os
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import re
|
||||
from copy import deepcopy
|
||||
from sklearn import linear_model
|
||||
from sklearn import datasets
|
||||
from collections import Counter
|
||||
|
||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
||||
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
||||
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
||||
|
||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
from sklearn.svm import SVC
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
|
||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||
|
||||
# added
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
|
||||
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||
|
||||
from sklearn.pipeline import Pipeline, make_pipeline
|
||||
|
||||
from sklearn.feature_selection import RFE, RFECV
|
||||
|
||||
import itertools
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from statistics import mean, stdev, median, mode
|
||||
|
||||
from imblearn.over_sampling import RandomOverSampler
|
||||
from imblearn.under_sampling import RandomUnderSampler
|
||||
from imblearn.over_sampling import SMOTE
|
||||
from sklearn.datasets import make_classification
|
||||
from imblearn.combine import SMOTEENN
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
from imblearn.over_sampling import SMOTENC
|
||||
from imblearn.under_sampling import EditedNearestNeighbours
|
||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.impute import KNNImputer as KNN
|
||||
import json
|
||||
import argparse
|
||||
import re
|
||||
import itertools
|
||||
from sklearn.model_selection import LeaveOneGroupOut
|
||||
###############################################################################
|
||||
homedir = os.path.expanduser("~")
|
||||
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
|
@ -22,7 +88,7 @@ from MultClfs_logo_skf import *
|
|||
#from GetMLData import *
|
||||
#from SplitTTS import *
|
||||
|
||||
skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True,**rs)
|
||||
skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42)
|
||||
|
||||
#logo = LeaveOneGroupOut()
|
||||
|
||||
|
@ -38,13 +104,17 @@ def CMLogoSkf(combined_df
|
|||
|
||||
for bts_gene in bts_genes:
|
||||
print('\n BTS gene:', bts_gene)
|
||||
if not std_gene_omit:
|
||||
training_genesL = ['alr']
|
||||
else:
|
||||
training_genesL = []
|
||||
|
||||
tr_gene_omit = std_gene_omit + [bts_gene]
|
||||
n_tr_genes = (len(bts_genes) - (len(std_gene_omit)))
|
||||
#n_total_genes = (len(bts_genes) - len(std_gene_omit))
|
||||
n_total_genes = len(all_genes)
|
||||
|
||||
training_genesL = std_gene_omit + list(set(bts_genes) - set(tr_gene_omit))
|
||||
training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit))
|
||||
#training_genesL = [element for element in bts_genes if element not in tr_gene_omit]
|
||||
|
||||
print('\nTotal genes: ', n_total_genes
|
||||
|
@ -53,7 +123,7 @@ def CMLogoSkf(combined_df
|
|||
, '\nOmitted genes:', tr_gene_omit
|
||||
, '\nBlind test gene:', bts_gene)
|
||||
|
||||
tts_split_type = "logoBT_" + bts_gene
|
||||
tts_split_type = "logo_skf_BT_" + bts_gene
|
||||
|
||||
outFile = "/home/tanu/git/Data/ml_combined/" + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
|
||||
print(outFile)
|
||||
|
@ -67,7 +137,6 @@ def CMLogoSkf(combined_df
|
|||
#cm_y = cm_training_df.loc[:,'dst_mode']
|
||||
cm_y = cm_training_df.loc[:, target_var]
|
||||
|
||||
|
||||
gene_group = cm_training_df.loc[:,'gene_name']
|
||||
|
||||
print('\nTraining data dim:', cm_X.shape
|
||||
|
@ -87,14 +156,14 @@ def CMLogoSkf(combined_df
|
|||
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
|
||||
cm_bts_y = cm_test_df.loc[:, target_var]
|
||||
|
||||
print('\nTraining data dim:', cm_bts_X.shape
|
||||
, '\nTraining Target dim:', cm_bts_y.shape)
|
||||
print('\nTEST data dim:', cm_bts_X.shape
|
||||
, '\nTEST Target dim:', cm_bts_y.shape)
|
||||
|
||||
|
||||
#%%:Running Multiple models on LOGO with SKF
|
||||
cD3_v2 = MultModelsCl_logo_skf(input_df = cm_X
|
||||
, target = cm_y
|
||||
, group = 'none'
|
||||
#, group = 'none'
|
||||
, sel_cv = skf_cv
|
||||
|
||||
, blind_test_df = cm_bts_X
|
||||
|
@ -116,5 +185,5 @@ def CMLogoSkf(combined_df
|
|||
cD3_v2.to_csv(outFile)
|
||||
|
||||
#%%
|
||||
CMLogoSkf(combined_df)
|
||||
#CMLogoSkf(combined_df)
|
||||
CMLogoSkf(combined_df, std_gene_omit=['alr'])
|
||||
|
|
|
@ -78,6 +78,7 @@ import re
|
|||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
|
||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
|
@ -87,6 +88,9 @@ scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
|||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
skf_cv = StratifiedKFold(n_splits = 10
|
||||
#, shuffle = False, random_state= None)
|
||||
, shuffle = True,**rs)
|
||||
|
@ -95,9 +99,6 @@ rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|||
, n_repeats = 3
|
||||
, **rs)
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
###############################################################################
|
||||
def fsgs_rfecv(input_df
|
||||
, target
|
||||
|
@ -109,7 +110,10 @@ def fsgs_rfecv(input_df
|
|||
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
|
||||
, cv_method = skf_cv
|
||||
, var_type = ['numerical', 'categorical' , 'mixed']
|
||||
, resampling_type = 'none'
|
||||
, verbose = 3
|
||||
, random_state = 42
|
||||
, n_jobs = 10
|
||||
):
|
||||
'''
|
||||
returns
|
||||
|
@ -120,6 +124,10 @@ def fsgs_rfecv(input_df
|
|||
optimised/selected based on mcc
|
||||
|
||||
'''
|
||||
rs = {'random_state': random_state}
|
||||
njobs = {'n_jobs': n_jobs}
|
||||
|
||||
|
||||
###########################################################################
|
||||
#================================================
|
||||
# Determine categorical and numerical features
|
||||
|
@ -375,6 +383,8 @@ def fsgs_rfecv(input_df
|
|||
output_modelD['train_score (MCC)'] = train_bscore
|
||||
output_modelD['bts_mcc'] = bts_mcc_score
|
||||
output_modelD['train_bts_diff'] = round(train_test_diff,2)
|
||||
output_modelD['resampling'] = resampling_type
|
||||
|
||||
print(output_modelD)
|
||||
|
||||
nlen = len(output_modelD)
|
||||
|
|
|
@ -77,9 +77,6 @@ import re
|
|||
import itertools
|
||||
from sklearn.model_selection import LeaveOneGroupOut
|
||||
#%% GLOBALS
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
|
@ -146,7 +143,7 @@ def MultModelsCl_logo_skf(input_df
|
|||
, blind_test_df = pd.DataFrame()
|
||||
, blind_test_target = pd.Series(dtype = int)
|
||||
, tts_split_type = "none"
|
||||
, group = 'none'
|
||||
#, group = 'none'
|
||||
|
||||
, resampling_type = 'none' # default
|
||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||
|
@ -188,11 +185,11 @@ def MultModelsCl_logo_skf(input_df
|
|||
, **rs)
|
||||
logo = LeaveOneGroupOut()
|
||||
|
||||
# select CV type:
|
||||
if group == 'none':
|
||||
sel_cv = skf_cv
|
||||
else:
|
||||
sel_cv = logo
|
||||
# # select CV type:
|
||||
# if group == 'none':
|
||||
# sel_cv = skf_cv
|
||||
# else:
|
||||
# sel_cv = logo
|
||||
#======================================================
|
||||
# Determine categorical and numerical features
|
||||
#======================================================
|
||||
|
@ -277,7 +274,7 @@ def MultModelsCl_logo_skf(input_df
|
|||
, input_df
|
||||
, target
|
||||
, cv = sel_cv
|
||||
, groups = group
|
||||
#, groups = group
|
||||
, scoring = scoring_fn
|
||||
, return_train_score = True)
|
||||
#==============================
|
||||
|
@ -306,7 +303,12 @@ def MultModelsCl_logo_skf(input_df
|
|||
cmD = {}
|
||||
|
||||
# Calculate cm
|
||||
y_pred = cross_val_predict(model_pipeline, input_df, target, cv = sel_cv, groups = group, **njobs)
|
||||
y_pred = cross_val_predict(model_pipeline
|
||||
, input_df
|
||||
, target
|
||||
, cv = sel_cv
|
||||
#, groups = group
|
||||
, **njobs)
|
||||
#_tn, _fp, _fn, _tp = confusion_matrix(y_pred, y).ravel() # internally
|
||||
tn, fp, fn, tp = confusion_matrix(y_pred, target).ravel()
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue