189 lines
6.9 KiB
Python
Executable file
189 lines
6.9 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed Jun 29 19:44:06 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
import sys, os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import re
|
|
from copy import deepcopy
|
|
from sklearn import linear_model
|
|
from sklearn import datasets
|
|
from collections import Counter
|
|
|
|
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
|
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
|
|
|
from sklearn.naive_bayes import BernoulliNB
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.svm import SVC
|
|
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
|
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
|
from sklearn.naive_bayes import GaussianNB
|
|
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
|
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
|
|
|
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
|
from sklearn.neural_network import MLPClassifier
|
|
|
|
from sklearn.svm import SVC
|
|
from xgboost import XGBClassifier
|
|
from sklearn.naive_bayes import MultinomialNB
|
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
|
|
|
from sklearn.compose import ColumnTransformer
|
|
from sklearn.compose import make_column_transformer
|
|
|
|
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
|
|
|
# added
|
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
|
|
|
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
|
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
|
|
|
from sklearn.pipeline import Pipeline, make_pipeline
|
|
|
|
from sklearn.feature_selection import RFE, RFECV
|
|
|
|
import itertools
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
|
|
from statistics import mean, stdev, median, mode
|
|
|
|
from imblearn.over_sampling import RandomOverSampler
|
|
from imblearn.under_sampling import RandomUnderSampler
|
|
from imblearn.over_sampling import SMOTE
|
|
from sklearn.datasets import make_classification
|
|
from imblearn.combine import SMOTEENN
|
|
from imblearn.combine import SMOTETomek
|
|
|
|
from imblearn.over_sampling import SMOTENC
|
|
from imblearn.under_sampling import EditedNearestNeighbours
|
|
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
|
|
|
from sklearn.model_selection import GridSearchCV
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.impute import KNNImputer as KNN
|
|
import json
|
|
import argparse
|
|
import re
|
|
import itertools
|
|
from sklearn.model_selection import LeaveOneGroupOut
|
|
###############################################################################
|
|
homedir = os.path.expanduser("~")
|
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
|
sys.path
|
|
###############################################################################
|
|
#====================
|
|
# Import ML functions
|
|
#====================
|
|
from ml_data_combined import *
|
|
from MultClfs_logo_skf import *
|
|
#from GetMLData import *
|
|
#from SplitTTS import *
|
|
|
|
skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42)
|
|
|
|
#logo = LeaveOneGroupOut()
|
|
|
|
#%%
|
|
def CMLogoSkf(combined_df
|
|
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
|
, bts_genes = ["embb", "katg", "rpob", "pnca", "gid"]
|
|
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
|
, target_var = 'dst_mode'
|
|
, gene_group = 'gene_name'
|
|
, std_gene_omit = []
|
|
):
|
|
|
|
for bts_gene in bts_genes:
|
|
print('\n BTS gene:', bts_gene)
|
|
if not std_gene_omit:
|
|
training_genesL = ['alr']
|
|
else:
|
|
training_genesL = []
|
|
|
|
tr_gene_omit = std_gene_omit + [bts_gene]
|
|
n_tr_genes = (len(bts_genes) - (len(std_gene_omit)))
|
|
#n_total_genes = (len(bts_genes) - len(std_gene_omit))
|
|
n_total_genes = len(all_genes)
|
|
|
|
training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit))
|
|
#training_genesL = [element for element in bts_genes if element not in tr_gene_omit]
|
|
|
|
print('\nTotal genes: ', n_total_genes
|
|
,'\nTraining on:', n_tr_genes
|
|
,'\nTraining on genes:', training_genesL
|
|
, '\nOmitted genes:', tr_gene_omit
|
|
, '\nBlind test gene:', bts_gene)
|
|
|
|
tts_split_type = "logo_skf_BT_" + bts_gene
|
|
|
|
outFile = "/home/tanu/git/Data/ml_combined/" + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
|
|
print(outFile)
|
|
|
|
#-------
|
|
# training
|
|
#------
|
|
cm_training_df = combined_df[~combined_df['gene_name'].isin(tr_gene_omit)]
|
|
|
|
cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False)
|
|
#cm_y = cm_training_df.loc[:,'dst_mode']
|
|
cm_y = cm_training_df.loc[:, target_var]
|
|
|
|
gene_group = cm_training_df.loc[:,'gene_name']
|
|
|
|
print('\nTraining data dim:', cm_X.shape
|
|
, '\nTraining Target dim:', cm_y.shape)
|
|
|
|
if all(cm_X.columns.isin(cols_to_drop) == False):
|
|
print('\nChecked training df does NOT have Target var')
|
|
else:
|
|
sys.exit('\nFAIL: training data contains Target var')
|
|
|
|
#---------------
|
|
# BTS: genes
|
|
#---------------
|
|
cm_test_df = combined_df[combined_df['gene_name'].isin([bts_gene])]
|
|
|
|
cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False)
|
|
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
|
|
cm_bts_y = cm_test_df.loc[:, target_var]
|
|
|
|
print('\nTEST data dim:', cm_bts_X.shape
|
|
, '\nTEST Target dim:', cm_bts_y.shape)
|
|
|
|
|
|
#%%:Running Multiple models on LOGO with SKF
|
|
cD3_v2 = MultModelsCl_logo_skf(input_df = cm_X
|
|
, target = cm_y
|
|
#, group = 'none'
|
|
, sel_cv = skf_cv
|
|
|
|
, blind_test_df = cm_bts_X
|
|
, blind_test_target = cm_bts_y
|
|
|
|
, tts_split_type = tts_split_type
|
|
|
|
, resampling_type = 'none' # default
|
|
, add_cm = True
|
|
, add_yn = True
|
|
, var_type = 'mixed'
|
|
|
|
, run_blind_test = True
|
|
, return_formatted_output = True
|
|
, random_state = 42
|
|
, n_jobs = 10
|
|
)
|
|
|
|
cD3_v2.to_csv(outFile)
|
|
|
|
#%%
|
|
#CMLogoSkf(combined_df)
|
|
CMLogoSkf(combined_df, std_gene_omit=['alr'])
|