saving work

This commit is contained in:
Tanushree Tunstall 2022-07-01 20:37:41 +01:00
parent d812835713
commit b5777a17c9
3 changed files with 103 additions and 22 deletions

85
scripts/ml/combined_model/cm_logo_skf.py Normal file → Executable file
View file

@ -9,6 +9,72 @@ import sys, os
import pandas as pd
import numpy as np
import re
from copy import deepcopy
from sklearn import linear_model
from sklearn import datasets
from collections import Counter
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.compose import make_column_transformer
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
# added
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.feature_selection import RFE, RFECV
import itertools
import seaborn as sns
import matplotlib.pyplot as plt
from statistics import mean, stdev, median, mode
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from imblearn.combine import SMOTEENN
from imblearn.combine import SMOTETomek
from imblearn.over_sampling import SMOTENC
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
from sklearn.model_selection import GridSearchCV
from sklearn.base import BaseEstimator
from sklearn.impute import KNNImputer as KNN
import json
import argparse
import re
import itertools
from sklearn.model_selection import LeaveOneGroupOut
###############################################################################
homedir = os.path.expanduser("~")
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
@ -22,7 +88,7 @@ from MultClfs_logo_skf import *
#from GetMLData import *
#from SplitTTS import *
skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True,**rs)
skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42)
#logo = LeaveOneGroupOut()
@ -38,13 +104,17 @@ def CMLogoSkf(combined_df
for bts_gene in bts_genes:
print('\n BTS gene:', bts_gene)
if not std_gene_omit:
training_genesL = ['alr']
else:
training_genesL = []
tr_gene_omit = std_gene_omit + [bts_gene]
n_tr_genes = (len(bts_genes) - (len(std_gene_omit)))
#n_total_genes = (len(bts_genes) - len(std_gene_omit))
n_total_genes = len(all_genes)
training_genesL = std_gene_omit + list(set(bts_genes) - set(tr_gene_omit))
training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit))
#training_genesL = [element for element in bts_genes if element not in tr_gene_omit]
print('\nTotal genes: ', n_total_genes
@ -53,7 +123,7 @@ def CMLogoSkf(combined_df
, '\nOmitted genes:', tr_gene_omit
, '\nBlind test gene:', bts_gene)
tts_split_type = "logoBT_" + bts_gene
tts_split_type = "logo_skf_BT_" + bts_gene
outFile = "/home/tanu/git/Data/ml_combined/" + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
print(outFile)
@ -67,7 +137,6 @@ def CMLogoSkf(combined_df
#cm_y = cm_training_df.loc[:,'dst_mode']
cm_y = cm_training_df.loc[:, target_var]
gene_group = cm_training_df.loc[:,'gene_name']
print('\nTraining data dim:', cm_X.shape
@ -87,14 +156,14 @@ def CMLogoSkf(combined_df
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
cm_bts_y = cm_test_df.loc[:, target_var]
print('\nTraining data dim:', cm_bts_X.shape
, '\nTraining Target dim:', cm_bts_y.shape)
print('\nTEST data dim:', cm_bts_X.shape
, '\nTEST Target dim:', cm_bts_y.shape)
#%%:Running Multiple models on LOGO with SKF
cD3_v2 = MultModelsCl_logo_skf(input_df = cm_X
, target = cm_y
, group = 'none'
#, group = 'none'
, sel_cv = skf_cv
, blind_test_df = cm_bts_X
@ -116,5 +185,5 @@ def CMLogoSkf(combined_df
cD3_v2.to_csv(outFile)
#%%
CMLogoSkf(combined_df)
#CMLogoSkf(combined_df)
CMLogoSkf(combined_df, std_gene_omit=['alr'])