rearranged corr plot cols and also added example for ggpairs
This commit is contained in:
parent
fdb3f00503
commit
b302daaa60
7 changed files with 227 additions and 681 deletions
|
@ -15,6 +15,10 @@ corr_data_extract <- function(df
|
||||||
, extract_scaled_cols = F){
|
, extract_scaled_cols = F){
|
||||||
|
|
||||||
if ( missing(colnames_to_extract) || missing(colnames_display_key) ){
|
if ( missing(colnames_to_extract) || missing(colnames_display_key) ){
|
||||||
|
|
||||||
|
df$maf2 = log10(df$maf) # can't see otherwise
|
||||||
|
sum(is.na(df$maf2))
|
||||||
|
|
||||||
cat("\n=========================================="
|
cat("\n=========================================="
|
||||||
, "\nCORR PLOTS data: ALL params"
|
, "\nCORR PLOTS data: ALL params"
|
||||||
, "\n=========================================")
|
, "\n=========================================")
|
||||||
|
@ -30,20 +34,22 @@ corr_data_extract <- function(df
|
||||||
common_colnames = c(drug, "dst_mode"
|
common_colnames = c(drug, "dst_mode"
|
||||||
, "duet_stability_change" , "ddg_foldx" , "deepddg" , "ddg_dynamut2"
|
, "duet_stability_change" , "ddg_foldx" , "deepddg" , "ddg_dynamut2"
|
||||||
, "asa" , "rsa" , "kd_values" , "rd_values"
|
, "asa" , "rsa" , "kd_values" , "rd_values"
|
||||||
, "maf" , "log10_or_mychisq" , "neglog_pval_fisher"
|
# previously maf
|
||||||
|
, "maf2" , "log10_or_mychisq" , "neglog_pval_fisher"
|
||||||
, LigDist_colname
|
, LigDist_colname
|
||||||
, "consurf_score" , "snap2_score" , "provean_score"
|
, "consurf_score" , "snap2_score" , "provean_score"
|
||||||
, "ligand_affinity_change"
|
, "ligand_affinity_change", "mmcsm_lig"
|
||||||
#, "ddg_dynamut", "ddg_encom", "dds_encom", "ddg_mcsm", "ddg_sdm", "ddg_duet"
|
#, "ddg_dynamut", "ddg_encom", "dds_encom", "ddg_mcsm", "ddg_sdm", "ddg_duet"
|
||||||
)
|
)
|
||||||
|
|
||||||
display_common_colnames = c( drug, "dst_mode"
|
display_common_colnames = c( drug, "dst_mode"
|
||||||
, "DUET" , "FoldX" , "DeepDDG", "Dynamut2"
|
, "DUET" , "FoldX" , "DeepDDG", "Dynamut2"
|
||||||
, "ASA" , "RSA" , "KD" , "RD"
|
, "ASA" , "RSA" , "KD" , "RD"
|
||||||
, "MAF" , "Log(OR)" , "-Log(P)"
|
# previously MAF
|
||||||
|
, "Log(MAF)" , "Log(OR)" , "-Log(P)"
|
||||||
, "Lig-Dist"
|
, "Lig-Dist"
|
||||||
, "ConSurf" , "SNAP2" , "PROVEAN"
|
, "ConSurf" , "SNAP2" , "PROVEAN"
|
||||||
, "mCSM-lig"
|
, "mCSM-lig", "mmCSM-lig"
|
||||||
# , "Dynamut" , "ENCoM-DDG" , "mCSM" , "SDM" , "DUET-d" , "ENCoM-DDS"
|
# , "Dynamut" , "ENCoM-DDG" , "mCSM" , "SDM" , "DUET-d" , "ENCoM-DDS"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -8,6 +8,7 @@ source("~/git/LSHTM_analysis/config/embb.R")
|
||||||
|
|
||||||
# get plottting dfs
|
# get plottting dfs
|
||||||
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||||
|
source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R")
|
||||||
####################################################
|
####################################################
|
||||||
#=======
|
#=======
|
||||||
# output
|
# output
|
||||||
|
@ -23,55 +24,126 @@ corr_plotdf = corr_data_extract(merged_df3
|
||||||
, drug = drug
|
, drug = drug
|
||||||
, extract_scaled_cols = F)
|
, extract_scaled_cols = F)
|
||||||
colnames(corr_plotdf)
|
colnames(corr_plotdf)
|
||||||
colnames(corr_df_m3_f)
|
|
||||||
corr_plotdf = corr_df_m3_f #for downstream code
|
if (all(colnames(corr_df_m3_f) == colnames(corr_plotdf))){
|
||||||
|
cat("PASS: corr plot colnames match for dashboard")
|
||||||
|
}else{
|
||||||
|
stop("Abort: corr plot colnames DO NOT match for dashboard")
|
||||||
|
}
|
||||||
|
|
||||||
|
#corr_plotdf = corr_df_m3_f #for downstream code
|
||||||
|
|
||||||
|
aff_dist_cols = colnames(corr_plotdf)[grep("Dist", colnames(corr_plotdf))]
|
||||||
|
aff_dist_cols
|
||||||
|
|
||||||
|
|
||||||
|
static_cols = c("Log(MAF)"
|
||||||
|
, "Log(OR)"
|
||||||
|
#, "-Log(P)"
|
||||||
|
)
|
||||||
|
|
||||||
#================
|
#================
|
||||||
# stability
|
# stability
|
||||||
#================
|
#================
|
||||||
corr_ps_colnames = c("DUET"
|
#affinity_dist_colnames# lIg DIst and ppi Di
|
||||||
|
corr_ps_colnames = c(static_cols
|
||||||
|
, "DUET"
|
||||||
, "FoldX"
|
, "FoldX"
|
||||||
, "DeepDDG"
|
, "DeepDDG"
|
||||||
, "Dynamut2"
|
, "Dynamut2"
|
||||||
, "MAF"
|
, aff_dist_cols
|
||||||
, "Log(OR)"
|
, "dst_mode")
|
||||||
, "-Log(P)"
|
|
||||||
#, "ligand_distance"
|
|
||||||
, "dst_mode"
|
|
||||||
, drug)
|
|
||||||
|
|
||||||
corr_ps_colnames%in%colnames(corr_plotdf)
|
if (all(corr_ps_colnames%in%colnames(corr_plotdf))){
|
||||||
|
cat("PASS: all colnames exist for correlation")
|
||||||
|
}else{
|
||||||
|
stop("Abort: all colnames DO NOT exist for correlation")
|
||||||
|
}
|
||||||
corr_df_ps = corr_plotdf[, corr_ps_colnames]
|
corr_df_ps = corr_plotdf[, corr_ps_colnames]
|
||||||
complete_obs_ps = nrow(corr_df_ps) - sum(is.na(corr_df_ps$`Log(OR)`))
|
complete_obs_ps = nrow(corr_df_ps) - sum(is.na(corr_df_ps$`Log(OR)`))
|
||||||
cat("\nComplete muts for Conservation for", gene, ":", complete_obs_ps)
|
cat("\nComplete muts for Conservation for", gene, ":", complete_obs_ps)
|
||||||
|
|
||||||
color_coln = which(colnames(corr_df_ps) == "dst_mode")
|
color_coln = which(colnames(corr_df_ps) == "dst_mode")
|
||||||
end = which(colnames(corr_df_ps) == drug)
|
#end = which(colnames(corr_df_ps) == drug)
|
||||||
ncol_omit = 2
|
#ncol_omit = 2
|
||||||
corr_end = end-ncol_omit
|
#corr_end = end-ncol_omit
|
||||||
|
corr_end = color_coln-1
|
||||||
|
|
||||||
#------------------------
|
#------------------------
|
||||||
# Output: stability corrP
|
# Output: stability corrP
|
||||||
#------------------------
|
#------------------------
|
||||||
corr_psP = paste0(outdir_images
|
corr_psP = paste0(outdir_images
|
||||||
,tolower(gene)
|
,tolower(gene)
|
||||||
,"_corr_stability.svg" )
|
,"_corr_stability.svg" )
|
||||||
|
|
||||||
cat("Corr plot stability with coloured dots:", corr_psP)
|
cat("Corr plot stability with coloured dots:", corr_psP)
|
||||||
svg(corr_psP, width = 15, height = 15)
|
svg(corr_psP, width = 15, height = 15)
|
||||||
|
|
||||||
my_corr_pairs(corr_data_all = corr_df_ps
|
my_corr_pairs(corr_data_all = corr_df_ps
|
||||||
, corr_cols = colnames(corr_df_ps[1:corr_end])
|
, corr_cols = colnames(corr_df_ps[1:corr_end])
|
||||||
, corr_method = "spearman"
|
, corr_method = "spearman"
|
||||||
, colour_categ_col = colnames(corr_df_ps[color_coln]) #"dst_mode"
|
, colour_categ_col = colnames(corr_df_ps[color_coln]) #"dst_mode"
|
||||||
, categ_colour = c("red", "blue")
|
, categ_colour = c("red", "blue")
|
||||||
, density_show = F
|
, density_show = F
|
||||||
, hist_col = "coral4"
|
, hist_col = "coral4"
|
||||||
, dot_size = 1.6
|
, dot_size = 1.6
|
||||||
, ats = 1.5
|
, ats = 1.5
|
||||||
, corr_lab_size = 3
|
, corr_lab_size = 3
|
||||||
, corr_value_size = 1)
|
, corr_value_size = 1)
|
||||||
|
|
||||||
dev.off()
|
dev.off()
|
||||||
|
#===============
|
||||||
|
# CONSERVATION
|
||||||
|
#==============
|
||||||
|
corr_conservation_cols = c( static_cols
|
||||||
|
, "ConSurf"
|
||||||
|
, "SNAP2"
|
||||||
|
, "PROVEAN"
|
||||||
|
, aff_dist_cols
|
||||||
|
, "dst_mode"
|
||||||
|
, drug)
|
||||||
|
|
||||||
|
if (all(corr_conservation_cols%in%colnames(corr_plotdf))){
|
||||||
|
cat("PASS: all colnames exist for ConSurf-correlation")
|
||||||
|
}else{
|
||||||
|
stop("Abort: all colnames DO NOT exist for ConSurf-correlation")
|
||||||
|
}
|
||||||
|
|
||||||
|
corr_df_cons = corr_plotdf[, corr_conservation_cols]
|
||||||
|
complete_obs_cons = nrow(corr_df_cons) - sum(is.na(corr_df_cons$`Log(OR)`))
|
||||||
|
cat("\nComplete muts for Conservation for", gene, ":", complete_obs_cons)
|
||||||
|
|
||||||
|
color_coln = which(colnames(corr_df_cons) == "dst_mode")
|
||||||
|
# end = which(colnames(corr_df_cons) == drug)
|
||||||
|
# ncol_omit = 2
|
||||||
|
# corr_end = end-ncol_omit
|
||||||
|
corr_end = color_coln-1
|
||||||
|
|
||||||
|
|
||||||
|
#---------------------------
|
||||||
|
# Output: Conservation corrP
|
||||||
|
#----------------------------
|
||||||
|
corr_consP = paste0(outdir_images
|
||||||
|
,tolower(gene)
|
||||||
|
,"_corr_conservation.svg" )
|
||||||
|
|
||||||
|
cat("Corr plot conservation coloured dots:", corr_consP)
|
||||||
|
svg(corr_consP, width = 10, height = 10)
|
||||||
|
|
||||||
|
my_corr_pairs(corr_data_all = corr_df_cons
|
||||||
|
, corr_cols = colnames(corr_df_cons[1:corr_end])
|
||||||
|
, corr_method = "spearman"
|
||||||
|
, colour_categ_col = colnames(corr_df_cons[color_coln]) #"dst_mode"
|
||||||
|
, categ_colour = c("red", "blue")
|
||||||
|
, density_show = F
|
||||||
|
, hist_col = "coral4"
|
||||||
|
, dot_size =1.1
|
||||||
|
, ats = 1.5
|
||||||
|
, corr_lab_size = 2.15
|
||||||
|
, corr_value_size = 1)
|
||||||
|
|
||||||
|
dev.off()
|
||||||
|
|
||||||
#####################################################
|
#####################################################
|
||||||
#DistCutOff = 10
|
#DistCutOff = 10
|
||||||
#LigDist_colname # = "ligand_distance" # from globals
|
#LigDist_colname # = "ligand_distance" # from globals
|
||||||
|
@ -82,31 +154,36 @@ dev.off()
|
||||||
#================
|
#================
|
||||||
# ligand affinity
|
# ligand affinity
|
||||||
#================
|
#================
|
||||||
corr_lig_colnames = c("mCSM-lig"
|
corr_df_lig = corr_plotdf[corr_plotdf["Lig-Dist"]<DistCutOff,]
|
||||||
, "MAF"
|
|
||||||
, "Log(OR)"
|
corr_lig_colnames = c(static_cols
|
||||||
, "-Log(P)"
|
, "mCSM-lig"
|
||||||
, "Lig-Dist"
|
, "mmCSM-lig"
|
||||||
, "dst_mode"
|
, "dst_mode")
|
||||||
, drug)
|
#, drug)
|
||||||
|
|
||||||
|
if (all(corr_lig_colnames%in%colnames(corr_plotdf))){
|
||||||
|
cat("PASS: all colnames exist for Lig-correlation")
|
||||||
|
}else{
|
||||||
|
stop("Abort: all colnames DO NOT exist for Lig-correlation")
|
||||||
|
}
|
||||||
|
|
||||||
corr_lig_colnames%in%colnames(corr_plotdf)
|
|
||||||
corr_df_lig = corr_plotdf[, corr_lig_colnames]
|
corr_df_lig = corr_plotdf[, corr_lig_colnames]
|
||||||
corr_df_lig = corr_df_lig[corr_df_lig["Lig-Dist"]<DistCutOff,]
|
|
||||||
complete_obs_lig = nrow(corr_df_lig) - sum(is.na(corr_df_lig$`Log(OR)`))
|
complete_obs_lig = nrow(corr_df_lig) - sum(is.na(corr_df_lig$`Log(OR)`))
|
||||||
cat("\nComplete muts for lig affinity for", gene, ":", complete_obs_lig)
|
cat("\nComplete muts for lig affinity for", gene, ":", complete_obs_lig)
|
||||||
|
|
||||||
color_coln = which(colnames(corr_df_lig) == "dst_mode")
|
color_coln = which(colnames(corr_df_lig) == "dst_mode")
|
||||||
end = which(colnames(corr_df_lig) == drug)
|
# end = which(colnames(corr_df_lig) == drug)
|
||||||
ncol_omit = 3 #omit dist col
|
# ncol_omit = 2
|
||||||
corr_end = end-ncol_omit
|
# corr_end = end-ncol_omit
|
||||||
|
corr_end = color_coln-1
|
||||||
|
|
||||||
#------------------------
|
#------------------------
|
||||||
# Output: ligand corrP
|
# Output: ligand corrP
|
||||||
#------------------------
|
#------------------------
|
||||||
corr_ligP = paste0(outdir_images
|
corr_ligP = paste0(outdir_images
|
||||||
,tolower(gene)
|
,tolower(gene)
|
||||||
,"_corr_lig.svg" )
|
,"_corr_lig.svg" )
|
||||||
|
|
||||||
cat("Corr plot affinity with coloured dots:", corr_ligP)
|
cat("Corr plot affinity with coloured dots:", corr_ligP)
|
||||||
svg(corr_ligP, width = 10, height = 10)
|
svg(corr_ligP, width = 10, height = 10)
|
||||||
|
@ -127,32 +204,38 @@ dev.off()
|
||||||
#================
|
#================
|
||||||
# ppi2 affinity
|
# ppi2 affinity
|
||||||
#================
|
#================
|
||||||
|
|
||||||
if (tolower(gene)%in%geneL_ppi2){
|
if (tolower(gene)%in%geneL_ppi2){
|
||||||
corr_ppi2_colnames = c("mCSM-PPI2"
|
|
||||||
, "MAF"
|
corr_df_ppi2 = corr_plotdf[corr_plotdf["PPI-Dist"]<DistCutOff,]
|
||||||
, "Log(OR)"
|
|
||||||
, "-Log(P)"
|
corr_ppi2_colnames = c(static_cols
|
||||||
, "PPI-Dist" # "interface_dist"
|
, "mCSM-PPI2"
|
||||||
, "dst_mode"
|
, "dst_mode"
|
||||||
, drug)
|
, drug)
|
||||||
|
|
||||||
corr_ppi2_colnames%in%colnames(corr_plotdf)
|
if (all(corr_ppi2_colnames%in%colnames(corr_plotdf))){
|
||||||
|
cat("PASS: all colnames exist for mcsm-ppi2 correlation")
|
||||||
|
}else{
|
||||||
|
stop("Abort: all colnames DO NOT exist for mcsm-ppi2 correlation")
|
||||||
|
}
|
||||||
|
|
||||||
corr_df_ppi2 = corr_plotdf[, corr_ppi2_colnames]
|
corr_df_ppi2 = corr_plotdf[, corr_ppi2_colnames]
|
||||||
corr_df_ppi2 = corr_df_ppi2[corr_df_ppi2["PPI-Dist"]<DistCutOff,]
|
|
||||||
complete_obs_ppi2 = nrow(corr_df_ppi2) - sum(is.na(corr_df_ppi2$`Log(OR)`))
|
complete_obs_ppi2 = nrow(corr_df_ppi2) - sum(is.na(corr_df_ppi2$`Log(OR)`))
|
||||||
cat("\nComplete muts for ppi2 affinity for", gene, ":", complete_obs_ppi2)
|
cat("\nComplete muts for ppi2 affinity for", gene, ":", complete_obs_ppi2)
|
||||||
|
|
||||||
color_coln = which(colnames(corr_df_ppi2) == "dst_mode")
|
color_coln = which(colnames(corr_df_ppi2) == "dst_mode")
|
||||||
end = which(colnames(corr_df_ppi2) == drug)
|
# end = which(colnames(corr_df_ppi2) == drug)
|
||||||
ncol_omit = 3 #omit dist col
|
# ncol_omit = 2
|
||||||
corr_end = end-ncol_omit
|
# corr_end = end-ncol_omit
|
||||||
|
corr_end = color_coln-1
|
||||||
|
|
||||||
#------------------------
|
#------------------------
|
||||||
# Output: ppi2 corrP
|
# Output: ppi2 corrP
|
||||||
#------------------------
|
#------------------------
|
||||||
corr_ppi2P = paste0(outdir_images
|
corr_ppi2P = paste0(outdir_images
|
||||||
,tolower(gene)
|
,tolower(gene)
|
||||||
,"_corr_ppi2.svg" )
|
,"_corr_ppi2.svg" )
|
||||||
|
|
||||||
cat("Corr plot ppi2 with coloured dots:", corr_ppi2P)
|
cat("Corr plot ppi2 with coloured dots:", corr_ppi2P)
|
||||||
svg(corr_ppi2P, width = 10, height = 10)
|
svg(corr_ppi2P, width = 10, height = 10)
|
||||||
|
@ -180,25 +263,29 @@ if (tolower(gene)%in%geneL_ppi2){
|
||||||
# NA affinity
|
# NA affinity
|
||||||
#================
|
#================
|
||||||
if (tolower(gene)%in%geneL_na){
|
if (tolower(gene)%in%geneL_na){
|
||||||
|
corr_df_na = corr_df_na[corr_df_na["NA-Dist"]<DistCutOff,]
|
||||||
|
|
||||||
corr_na_colnames = c("mCSM-NA"
|
corr_na_colnames = c(static_cols
|
||||||
, "MAF"
|
, "mCSM-NA"
|
||||||
, "Log(OR)"
|
|
||||||
, "-Log(P)"
|
|
||||||
, "NA-Dist" # "NA_dist"
|
|
||||||
, "dst_mode"
|
, "dst_mode"
|
||||||
, drug)
|
, drug)
|
||||||
|
|
||||||
|
if (all(corr_na_colnames%in%colnames(corr_plotdf))){
|
||||||
|
cat("PASS: all colnames exist for mcsm-NA-correlation")
|
||||||
|
}else{
|
||||||
|
stop("Abort: all colnames DO NOT exist for mcsm-NA-correlation")
|
||||||
|
}
|
||||||
|
|
||||||
corr_na_colnames%in%colnames(corr_plotdf)
|
corr_na_colnames%in%colnames(corr_plotdf)
|
||||||
corr_df_na = corr_plotdf[, corr_na_colnames]
|
corr_df_na = corr_plotdf[, corr_na_colnames]
|
||||||
corr_df_na = corr_df_na[corr_df_na["NA-Dist"]<DistCutOff,]
|
|
||||||
complete_obs_na = nrow(corr_df_na) - sum(is.na(corr_df_na$`Log(OR)`))
|
complete_obs_na = nrow(corr_df_na) - sum(is.na(corr_df_na$`Log(OR)`))
|
||||||
cat("\nComplete muts for NA affinity for", gene, ":", complete_obs_na)
|
cat("\nComplete muts for NA affinity for", gene, ":", complete_obs_na)
|
||||||
|
|
||||||
color_coln = which(colnames(corr_df_na) == "dst_mode")
|
color_coln = which(colnames(corr_df_na) == "dst_mode")
|
||||||
end = which(colnames(corr_df_na) == drug)
|
# end = which(colnames(corr_df_na) == drug)
|
||||||
ncol_omit = 3 #omit dist col
|
# ncol_omit = 2
|
||||||
corr_end = end-ncol_omit
|
# corr_end = end-ncol_omit
|
||||||
|
corr_end = color_coln-1
|
||||||
|
|
||||||
#------------------------
|
#------------------------
|
||||||
# Output: mCSM-NA corrP
|
# Output: mCSM-NA corrP
|
||||||
|
@ -224,51 +311,21 @@ if (tolower(gene)%in%geneL_na){
|
||||||
|
|
||||||
dev.off()
|
dev.off()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
####################################################
|
####################################################
|
||||||
# CONSERVATION
|
#===============
|
||||||
corr_conservation_cols = c("ConSurf"
|
#ggpairs:
|
||||||
, "SNAP2"
|
#================
|
||||||
, "PROVEAN"
|
#corr_df_ps$dst_mode = ifelse(corr_df_cons$dst_mode=="1", "R", "S")
|
||||||
, "MAF"
|
|
||||||
, "Log(OR)"
|
|
||||||
, "-Log(P)"
|
|
||||||
, "dst_mode"
|
|
||||||
, drug)
|
|
||||||
|
|
||||||
colnames(corr_plotdf)
|
svg('/tmp/foo.svg', width=10, height=10, )
|
||||||
corr_conservation_cols%in%colnames(corr_plotdf)
|
|
||||||
corr_df_cons = corr_plotdf[, corr_conservation_cols]
|
|
||||||
complete_obs_cons = nrow(corr_df_cons) - sum(is.na(corr_df_cons$`Log(OR)`))
|
|
||||||
cat("\nComplete muts for Conservation for", gene, ":", complete_obs_cons)
|
|
||||||
|
|
||||||
color_coln = which(colnames(corr_df_cons) == "dst_mode")
|
ggpairs(corr_df_ps, columns = 1:(ncol(corr_df_ps)-corr_end)
|
||||||
end = which(colnames(corr_df_cons) == drug)
|
, upper = list(continuous = wrap('cor', method = "spearman"))
|
||||||
ncol_omit = 2
|
, aes(colour = factor(dst_mode), alpha = 0.5)
|
||||||
corr_end = end-ncol_omit
|
, title="correlogram with ggpairs()") +
|
||||||
|
scale_colour_manual(values = c("red", "blue")) +
|
||||||
|
scale_fill_manual(values = c("red", "blue"))
|
||||||
|
|
||||||
#---------------------------
|
|
||||||
# Output: Conservation corrP
|
|
||||||
#----------------------------
|
|
||||||
corr_consP = paste0(outdir_images
|
|
||||||
,tolower(gene)
|
|
||||||
,"_corr_conservation.svg" )
|
|
||||||
|
|
||||||
cat("Corr plot conservation coloured dots:", corr_consP)
|
|
||||||
svg(corr_consP, width = 10, height = 10)
|
|
||||||
|
|
||||||
my_corr_pairs(corr_data_all = corr_df_cons
|
|
||||||
, corr_cols = colnames(corr_df_cons[1:corr_end])
|
|
||||||
, corr_method = "spearman"
|
|
||||||
, colour_categ_col = colnames(corr_df_cons[color_coln]) #"dst_mode"
|
|
||||||
, categ_colour = c("red", "blue")
|
|
||||||
, density_show = F
|
|
||||||
, hist_col = "coral4"
|
|
||||||
, dot_size =1.1
|
|
||||||
, ats = 1.5
|
|
||||||
, corr_lab_size = 2.5
|
|
||||||
, corr_value_size = 1)
|
|
||||||
|
|
||||||
dev.off()
|
dev.off()
|
||||||
|
|
||||||
|
|
|
@ -9,6 +9,7 @@ source("~/git/LSHTM_analysis/config/embb.R")
|
||||||
# get plottting dfs
|
# get plottting dfs
|
||||||
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||||
|
|
||||||
|
source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R")
|
||||||
#=======
|
#=======
|
||||||
# output
|
# output
|
||||||
#=======
|
#=======
|
||||||
|
|
|
@ -1,138 +0,0 @@
|
||||||
|
|
||||||
foo = df3_affinity_filtered[df3_affinity_filtered$ligand_distance<10,]
|
|
||||||
bar = df3_affinity_filtered[df3_affinity_filtered$interface_dist<10,]
|
|
||||||
|
|
||||||
wilcox.test(foo$mmcsm_lig_scaled~foo$sensitivity)
|
|
||||||
wilcox.test(foo$mmcsm_lig~foo$sensitivity)
|
|
||||||
|
|
||||||
wilcox.test(foo$affinity_scaled~foo$sensitivity)
|
|
||||||
wilcox.test(foo$ligand_affinity_change~foo$sensitivity)
|
|
||||||
|
|
||||||
wilcox.test(bar$mcsm_na_scaled~bar$sensitivity)
|
|
||||||
wilcox.test(bar$mcsm_na_affinity~bar$sensitivity)
|
|
||||||
|
|
||||||
wilcox.test(bar$mcsm_ppi2_scaled~bar$sensitivity)
|
|
||||||
wilcox.test(bar$mcsm_ppi2_affinity~bar$sensitivity)
|
|
||||||
|
|
||||||
|
|
||||||
# find the most "impactful" effect value
|
|
||||||
biggest=max(abs((a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')])))
|
|
||||||
|
|
||||||
abs((a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')]))==biggest
|
|
||||||
|
|
||||||
abs((a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')]))==c(,biggest)
|
|
||||||
|
|
||||||
max(abs((a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')])))
|
|
||||||
|
|
||||||
|
|
||||||
a2 = (a[c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')])
|
|
||||||
a2
|
|
||||||
#
|
|
||||||
# biggest = max(abs(a2[1,]))
|
|
||||||
#
|
|
||||||
# #hmm
|
|
||||||
# #which(abs(a2) == biggest)
|
|
||||||
# #names(a2)[apply(a2, 1:4, function(i) which(i == max()))]
|
|
||||||
#
|
|
||||||
# # get row max
|
|
||||||
# a2$row_maximum = apply(abs(a2[,-1]), 1, max)
|
|
||||||
#
|
|
||||||
# # get colname for abs(max_value)
|
|
||||||
# #https://stackoverflow.com/questions/36960010/get-column-name-that-matches-specific-row-value-in-dataframe
|
|
||||||
# #names(df)[which(df == 1, arr.ind=T)[, "col"]]
|
|
||||||
# # yayy
|
|
||||||
# names(a2)[which(abs(a2) == biggest, arr.ind=T)[, "col"]]
|
|
||||||
#
|
|
||||||
# #another:https://statisticsglobe.com/return-column-name-of-largest-value-for-each-row-in-r
|
|
||||||
# colnames(a2)[max.col(abs(a2), ties.method = "first")] # Apply colnames & max.col functions
|
|
||||||
# #################################################
|
|
||||||
# # use whole df
|
|
||||||
# #gene_aff_cols = c('affinity_scaled','mmcsm_lig_scaled','mcsm_ppi2_scaled','mcsm_na_scaled')
|
|
||||||
#
|
|
||||||
# biggest = max(abs(a[gene_aff_cols]))
|
|
||||||
# a$max_es = biggest
|
|
||||||
# a$effect = names(a[gene_aff_cols])[which(abs(a[gene_aff_cols]) == biggest, arr.ind=T)[, "col"]]
|
|
||||||
#
|
|
||||||
# effect_name = unique(a$effect)
|
|
||||||
# #get index of value of max effect
|
|
||||||
# ind = (which(abs(a[effect_name]) == biggest, arr.ind=T))
|
|
||||||
# a[effect_name][ind]
|
|
||||||
# # extract sign
|
|
||||||
# a$effect_sign = sign(a[effect_name][ind])
|
|
||||||
########################################################
|
|
||||||
# maxn <- function(n) function(x) order(x, decreasing = TRUE)[n]
|
|
||||||
# second_big = abs(a[gene_aff_cols])[maxn(2)(abs(a[gene_aff_cols])]
|
|
||||||
# apply(df, 1, function(x)x[maxn(1)(x)])
|
|
||||||
# apply(a[gene_aff_cols], 1, function(x) abs(a[gene_aff_cols])[maxn(2)(abs(a[gene_aff_cols]))])
|
|
||||||
#########################################################
|
|
||||||
# loop
|
|
||||||
a2 = df2[df2$position%in%c(167, 423, 427),]
|
|
||||||
test <- a2 %>%
|
|
||||||
dplyr::group_by(position) %>%
|
|
||||||
biggest = max(abs(a2[gene_aff_cols]))
|
|
||||||
a2$max_es = max(abs(a2[gene_aff_cols]))
|
|
||||||
a2$effect = names(a2[gene_aff_cols])[which(abs(a2[gene_aff_cols]) == biggest, arr.ind=T)[, "col"]]
|
|
||||||
effect_name = unique(a2$effect)
|
|
||||||
|
|
||||||
#get index of value of max effect
|
|
||||||
ind = (which(abs(a2[effect_name]) == biggest, arr.ind=T))
|
|
||||||
a2[effect_name][ind]
|
|
||||||
# extract sign
|
|
||||||
a2$effect_dir = sign(a2[effect_name][ind])
|
|
||||||
#################################
|
|
||||||
df2_short = df2[df2$position%in%c(167, 423, 427),]
|
|
||||||
|
|
||||||
for (i in unique(df2_short$position) ){
|
|
||||||
#print(i)
|
|
||||||
#print(paste0("\nNo. of unique positions:", length(unique(df2$position))) )
|
|
||||||
#cat(length(unique(df2$position)))
|
|
||||||
a2 = df2_short[df2_short$position==i,]
|
|
||||||
biggest = max(abs(a2[gene_aff_cols]))
|
|
||||||
a2$max_es = max(abs(a2[gene_aff_cols]))
|
|
||||||
a2$effect = names(a2[gene_aff_cols])[which(abs(a2[gene_aff_cols]) == biggest, arr.ind=T)[, "col"]]
|
|
||||||
effect_name = unique(a2$effect)
|
|
||||||
|
|
||||||
#get index of value of max effect
|
|
||||||
ind = (which(abs(a2[effect_name]) == biggest, arr.ind=T))
|
|
||||||
a2[effect_name][ind]
|
|
||||||
# extract sign
|
|
||||||
a2$effect_sign = sign(a2[effect_name][ind])
|
|
||||||
}
|
|
||||||
|
|
||||||
#========================
|
|
||||||
df2_short = df3[df3$position%in%c(167, 423, 427),]
|
|
||||||
df2_short = df3[df3$position%in%c(170, 167, 493, 453, 435, 433, 480, 456, 445),]
|
|
||||||
df2_short = df3[df3$position%in%c(435, 480),]
|
|
||||||
df2_short = df3[df3$position%in%c(435, 480),]
|
|
||||||
|
|
||||||
give_col=function(x,y,df=df2_short){
|
|
||||||
df[df$position==x,y]
|
|
||||||
}
|
|
||||||
|
|
||||||
for (i in unique(df2_short$position) ){
|
|
||||||
#print(i)
|
|
||||||
#print(paste0("\nNo. of unique positions:", length(unique(df2$position))) )
|
|
||||||
#cat(length(unique(df2$position)))
|
|
||||||
#df2_short[df2_short$position==i,gene_aff_cols]
|
|
||||||
|
|
||||||
biggest = max(abs(give_col(i,gene_aff_cols)))
|
|
||||||
|
|
||||||
df2_short[df2_short$position==i,'abs_max_effect'] = biggest
|
|
||||||
df2_short[df2_short$position==i,'effect_type']= names(
|
|
||||||
give_col(i,gene_aff_cols)[which(
|
|
||||||
abs(
|
|
||||||
give_col(i,gene_aff_cols)
|
|
||||||
) == biggest, arr.ind=T
|
|
||||||
)[, "col"]])
|
|
||||||
|
|
||||||
effect_name = df2_short[df2_short$position==i,'effect_type'][1] # pick first one in case we have multiple exact values
|
|
||||||
|
|
||||||
# get index/rowname for value of max effect, and then use it to get the original sign
|
|
||||||
# here
|
|
||||||
#df2_short[df2_short$position==i,c(effect_name)]
|
|
||||||
#which(abs(df2_short[df2_short$position==i,c('position',effect_name)][effect_name])==biggest, arr.ind=T)
|
|
||||||
ind = rownames(which(abs(df2_short[df2_short$position==i,c('position',effect_name)][effect_name])== biggest, arr.ind=T))
|
|
||||||
df2_short[df2_short$position==i,'effect_sign'] = sign(df2_short[effect_name][ind,])
|
|
||||||
}
|
|
||||||
|
|
||||||
df2_short$effect_type = sub("\\.[0-9]+", "", df2_short$effect_type) # cull duplicate effect types that happen when there are exact duplicate values
|
|
|
@ -1,241 +0,0 @@
|
||||||
#source("~/git/LSHTM_analysis/config/pnca.R")
|
|
||||||
#source("~/git/LSHTM_analysis/config/alr.R")
|
|
||||||
#source("~/git/LSHTM_analysis/config/gid.R")
|
|
||||||
#source("~/git/LSHTM_analysis/config/embb.R")
|
|
||||||
#source("~/git/LSHTM_analysis/config/katg.R")
|
|
||||||
#source("~/git/LSHTM_analysis/config/rpob.R")
|
|
||||||
|
|
||||||
source("/home/tanu/git/LSHTM_analysis/my_header.R")
|
|
||||||
#########################################################
|
|
||||||
# TASK: Generate averaged affinity values
|
|
||||||
# across all affinity tools for a given structure
|
|
||||||
# as applicable...
|
|
||||||
#########################################################
|
|
||||||
|
|
||||||
#=======
|
|
||||||
# output
|
|
||||||
#=======
|
|
||||||
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
|
||||||
|
|
||||||
#OutFile1
|
|
||||||
outfile_mean_aff = paste0(outdir_images, "/", tolower(gene)
|
|
||||||
, "_mean_affinity_all.csv")
|
|
||||||
print(paste0("Output file:", outfile_mean_aff))
|
|
||||||
|
|
||||||
#OutFile2
|
|
||||||
outfile_mean_aff_priorty = paste0(outdir_images, "/", tolower(gene)
|
|
||||||
, "_mean_affinity_priority.csv")
|
|
||||||
print(paste0("Output file:", outfile_mean_aff_priorty))
|
|
||||||
|
|
||||||
#%%===============================================================
|
|
||||||
|
|
||||||
#=============
|
|
||||||
# Input
|
|
||||||
#=============
|
|
||||||
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
|
|
||||||
df3 = read.csv(df3_filename)
|
|
||||||
length(df3$mutationinformation)
|
|
||||||
|
|
||||||
# mut_info checks
|
|
||||||
table(df3$mutation_info)
|
|
||||||
table(df3$mutation_info_orig)
|
|
||||||
table(df3$mutation_info_labels_orig)
|
|
||||||
|
|
||||||
# used in plots and analyses
|
|
||||||
table(df3$mutation_info_labels) # different, and matches dst_mode
|
|
||||||
table(df3$dst_mode)
|
|
||||||
|
|
||||||
# create column based on dst mode with different colname
|
|
||||||
table(is.na(df3$dst))
|
|
||||||
table(is.na(df3$dst_mode))
|
|
||||||
|
|
||||||
#===============
|
|
||||||
# Create column: sensitivity mapped to dst_mode
|
|
||||||
#===============
|
|
||||||
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
|
|
||||||
table(df3$sensitivity)
|
|
||||||
|
|
||||||
length(unique((df3$mutationinformation)))
|
|
||||||
all_colnames = as.data.frame(colnames(df3))
|
|
||||||
|
|
||||||
# FIXME: ADD distance to NA when SP replies
|
|
||||||
dist_columns = c("ligand_distance", "interface_dist")
|
|
||||||
DistCutOff = 10
|
|
||||||
common_cols = c("mutationinformation"
|
|
||||||
, "X5uhc_position"
|
|
||||||
, "X5uhc_offset"
|
|
||||||
, "position"
|
|
||||||
, "dst_mode"
|
|
||||||
, "mutation_info_labels"
|
|
||||||
, "sensitivity", dist_columns )
|
|
||||||
|
|
||||||
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
|
||||||
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
|
||||||
|
|
||||||
#===================
|
|
||||||
# stability cols
|
|
||||||
#===================
|
|
||||||
raw_cols_stability = c("duet_stability_change"
|
|
||||||
, "deepddg"
|
|
||||||
, "ddg_dynamut2"
|
|
||||||
, "ddg_foldx")
|
|
||||||
|
|
||||||
scaled_cols_stability = c("duet_scaled"
|
|
||||||
, "deepddg_scaled"
|
|
||||||
, "ddg_dynamut2_scaled"
|
|
||||||
, "foldx_scaled")
|
|
||||||
|
|
||||||
outcome_cols_stability = c("duet_outcome"
|
|
||||||
, "deepddg_outcome"
|
|
||||||
, "ddg_dynamut2_outcome"
|
|
||||||
, "foldx_outcome")
|
|
||||||
|
|
||||||
#===================
|
|
||||||
# affinity cols
|
|
||||||
#===================
|
|
||||||
raw_cols_affinity = c("ligand_affinity_change"
|
|
||||||
, "mmcsm_lig"
|
|
||||||
, "mcsm_ppi2_affinity"
|
|
||||||
, "mcsm_na_affinity")
|
|
||||||
|
|
||||||
scaled_cols_affinity = c("affinity_scaled"
|
|
||||||
, "mmcsm_lig_scaled"
|
|
||||||
, "mcsm_ppi2_scaled"
|
|
||||||
, "mcsm_na_scaled" )
|
|
||||||
|
|
||||||
outcome_cols_affinity = c( "ligand_outcome"
|
|
||||||
, "mmcsm_lig_outcome"
|
|
||||||
, "mcsm_ppi2_outcome"
|
|
||||||
, "mcsm_na_outcome")
|
|
||||||
|
|
||||||
#===================
|
|
||||||
# conservation cols
|
|
||||||
#===================
|
|
||||||
# raw_cols_conservation = c("consurf_score"
|
|
||||||
# , "snap2_score"
|
|
||||||
# , "provean_score")
|
|
||||||
#
|
|
||||||
# scaled_cols_conservation = c("consurf_scaled"
|
|
||||||
# , "snap2_scaled"
|
|
||||||
# , "provean_scaled")
|
|
||||||
#
|
|
||||||
# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether
|
|
||||||
# outcome_cols_conservation = c("provean_outcome"
|
|
||||||
# , "snap2_outcome"
|
|
||||||
# #consurf outcome doesn't exist
|
|
||||||
# )
|
|
||||||
|
|
||||||
gene_aff_cols = colnames(df3)[colnames(df3)%in%scaled_cols_affinity]
|
|
||||||
gene_stab_cols = colnames(df3)[colnames(df3)%in%scaled_cols_stability]
|
|
||||||
gene_common_cols = colnames(df3)[colnames(df3)%in%common_cols]
|
|
||||||
|
|
||||||
sel_cols = c(gene_common_cols
|
|
||||||
, gene_stab_cols
|
|
||||||
, gene_aff_cols)
|
|
||||||
|
|
||||||
#########################################
|
|
||||||
#df3_plot = df3[, cols_to_extract]
|
|
||||||
df3_plot = df3[, sel_cols]
|
|
||||||
|
|
||||||
######################
|
|
||||||
#FILTERING HMMMM!
|
|
||||||
#all dist <10
|
|
||||||
#for embb this results in 2 muts
|
|
||||||
######################
|
|
||||||
df3_affinity_filtered = df3_plot[ (df3_plot$ligand_distance<10 | df3_plot$interface_dist <10),]
|
|
||||||
df3_affinity_filtered = df3_plot[ (df3_plot$ligand_distance<10 & df3_plot$interface_dist <10),]
|
|
||||||
|
|
||||||
c0u = unique(df3_affinity_filtered$position)
|
|
||||||
length(c0u)
|
|
||||||
|
|
||||||
#df = df3_affinity_filtered
|
|
||||||
##########################################
|
|
||||||
#NO FILTERING: annotate the whole df
|
|
||||||
df = df3_plot
|
|
||||||
sum(is.na(df))
|
|
||||||
df2 = na.omit(df)
|
|
||||||
c0u = unique(df2$position)
|
|
||||||
length(c0u)
|
|
||||||
|
|
||||||
# reassign orig
|
|
||||||
my_df_raw = df3
|
|
||||||
|
|
||||||
# now subset
|
|
||||||
df3 = df2
|
|
||||||
#######################################################
|
|
||||||
#=================
|
|
||||||
# affinity effect
|
|
||||||
#=================
|
|
||||||
give_col=function(x,y,df=df3){
|
|
||||||
df[df$position==x,y]
|
|
||||||
}
|
|
||||||
|
|
||||||
for (i in unique(df3$position) ){
|
|
||||||
#print(i)
|
|
||||||
biggest = max(abs(give_col(i,gene_aff_cols)))
|
|
||||||
|
|
||||||
df3[df3$position==i,'abs_max_effect'] = biggest
|
|
||||||
df3[df3$position==i,'effect_type']= names(
|
|
||||||
give_col(i,gene_aff_cols)[which(
|
|
||||||
abs(
|
|
||||||
give_col(i,gene_aff_cols)
|
|
||||||
) == biggest, arr.ind=T
|
|
||||||
)[, "col"]])
|
|
||||||
|
|
||||||
# effect_name = unique(df3[df3$position==i,'effect_type'])
|
|
||||||
effect_name = df3[df3$position==i,'effect_type'][1] # pick first one in case we have multiple exact values
|
|
||||||
|
|
||||||
ind = rownames(which(abs(df3[df3$position==i,c('position',effect_name)][effect_name])== biggest, arr.ind=T))
|
|
||||||
df3[df3$position==i,'effect_sign'] = sign(df3[effect_name][ind,])
|
|
||||||
}
|
|
||||||
|
|
||||||
df3$effect_type = sub("\\.[0-9]+", "", df3$effect_type) # cull duplicate effect types that happen when there are exact duplicate values
|
|
||||||
df3U = df3[!duplicated(df3[c('position')]), ]
|
|
||||||
table(df3U$effect_type)
|
|
||||||
#########################################################
|
|
||||||
#%% consider stability as well
|
|
||||||
df4 = df2
|
|
||||||
|
|
||||||
#=================
|
|
||||||
# stability + affinity effect
|
|
||||||
#=================
|
|
||||||
effect_cols = c(gene_aff_cols, gene_stab_cols)
|
|
||||||
|
|
||||||
give_col=function(x,y,df=df4){
|
|
||||||
df[df$position==x,y]
|
|
||||||
}
|
|
||||||
|
|
||||||
for (i in unique(df4$position) ){
|
|
||||||
#print(i)
|
|
||||||
biggest = max(abs(give_col(i,effect_cols)))
|
|
||||||
|
|
||||||
df4[df4$position==i,'abs_max_effect'] = biggest
|
|
||||||
df4[df4$position==i,'effect_type']= names(
|
|
||||||
give_col(i,effect_cols)[which(
|
|
||||||
abs(
|
|
||||||
give_col(i,effect_cols)
|
|
||||||
) == biggest, arr.ind=T
|
|
||||||
)[, "col"]])
|
|
||||||
|
|
||||||
# effect_name = unique(df4[df4$position==i,'effect_type'])
|
|
||||||
effect_name = df4[df4$position==i,'effect_type'][1] # pick first one in case we have multiple exact values
|
|
||||||
|
|
||||||
ind = rownames(which(abs(df4[df4$position==i,c('position',effect_name)][effect_name])== biggest, arr.ind=T))
|
|
||||||
df4[df4$position==i,'effect_sign'] = sign(df4[effect_name][ind,])
|
|
||||||
}
|
|
||||||
|
|
||||||
df4$effect_type = sub("\\.[0-9]+", "", df4$effect_type) # cull duplicate effect types that happen when there are exact duplicate values
|
|
||||||
df4U = df4[!duplicated(df4[c('position')]), ]
|
|
||||||
table(df4U$effect_type)
|
|
||||||
|
|
||||||
#%%============================================================
|
|
||||||
# output
|
|
||||||
write.csv(combined_df, outfile_mean_ens_st_aff
|
|
||||||
, row.names = F)
|
|
||||||
cat("Finished writing file:\n"
|
|
||||||
, outfile_mean_ens_st_aff
|
|
||||||
, "\nNo. of rows:", nrow(combined_df)
|
|
||||||
, "\nNo. of cols:", ncol(combined_df))
|
|
||||||
|
|
||||||
# end of script
|
|
||||||
#===============================================================
|
|
|
@ -1,14 +1,13 @@
|
||||||
#source("~/git/LSHTM_analysis/config/pnca.R")
|
#source("~/git/LSHTM_analysis/config/pnca.R")
|
||||||
#source("~/git/LSHTM_analysis/config/alr.R")
|
#source("~/git/LSHTM_analysis/config/alr.R")
|
||||||
#source("~/git/LSHTM_analysis/config/gid.R")
|
#source("~/git/LSHTM_analysis/config/gid.R")
|
||||||
#source("~/git/LSHTM_analysis/config/embb.R")
|
source("~/git/LSHTM_analysis/config/embb.R")
|
||||||
#source("~/git/LSHTM_analysis/config/katg.R")
|
#source("~/git/LSHTM_analysis/config/katg.R")
|
||||||
#source("~/git/LSHTM_analysis/config/rpob.R")
|
#source("~/git/LSHTM_analysis/config/rpob.R")
|
||||||
|
|
||||||
source("/home/tanu/git/LSHTM_analysis/my_header.R")
|
|
||||||
#########################################################
|
#########################################################
|
||||||
# TASK: Generate averaged stability values
|
# TASK: Generate averaged stability values by position
|
||||||
# across all stability tools
|
# calculated across all stability tools
|
||||||
# for a given structure
|
# for a given structure
|
||||||
#########################################################
|
#########################################################
|
||||||
|
|
||||||
|
@ -23,190 +22,53 @@ print(paste0("Output file:", outfile_mean_ens_st_aff))
|
||||||
#%%===============================================================
|
#%%===============================================================
|
||||||
|
|
||||||
#=============
|
#=============
|
||||||
# Input
|
# Input: merged_df3
|
||||||
#=============
|
#=============
|
||||||
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
|
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||||
df3 = read.csv(df3_filename)
|
#merged_df3= paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
|
||||||
|
|
||||||
|
cols_to_extract_ms = c("mutationinformation", "position", "avg_stability_scaled")
|
||||||
|
|
||||||
|
df3 = merged_df3[, cols_to_extract_ms]
|
||||||
length(df3$mutationinformation)
|
length(df3$mutationinformation)
|
||||||
|
|
||||||
# mut_info checks
|
|
||||||
table(df3$mutation_info)
|
|
||||||
table(df3$mutation_info_orig)
|
|
||||||
table(df3$mutation_info_labels_orig)
|
|
||||||
|
|
||||||
# used in plots and analyses
|
|
||||||
table(df3$mutation_info_labels) # different, and matches dst_mode
|
|
||||||
table(df3$dst_mode)
|
|
||||||
|
|
||||||
# create column based on dst mode with different colname
|
|
||||||
table(is.na(df3$dst))
|
|
||||||
table(is.na(df3$dst_mode))
|
|
||||||
|
|
||||||
#===============
|
|
||||||
# Create column: sensitivity mapped to dst_mode
|
|
||||||
#===============
|
|
||||||
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
|
|
||||||
table(df3$sensitivity)
|
|
||||||
|
|
||||||
length(unique((df3$mutationinformation)))
|
|
||||||
all_colnames = as.data.frame(colnames(df3))
|
|
||||||
common_cols = c("mutationinformation"
|
|
||||||
, "position"
|
|
||||||
, "dst_mode"
|
|
||||||
, "mutation_info_labels"
|
|
||||||
, "sensitivity"
|
|
||||||
, "ligand_distance"
|
|
||||||
, "interface_dist")
|
|
||||||
|
|
||||||
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
|
||||||
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
|
||||||
|
|
||||||
#===================
|
|
||||||
# stability cols
|
|
||||||
#===================
|
|
||||||
raw_cols_stability = c("duet_stability_change"
|
|
||||||
, "deepddg"
|
|
||||||
, "ddg_dynamut2"
|
|
||||||
, "ddg_foldx")
|
|
||||||
|
|
||||||
scaled_cols_stability = c("duet_scaled"
|
|
||||||
, "deepddg_scaled"
|
|
||||||
, "ddg_dynamut2_scaled"
|
|
||||||
, "foldx_scaled")
|
|
||||||
|
|
||||||
outcome_cols_stability = c("duet_outcome"
|
|
||||||
, "deepddg_outcome"
|
|
||||||
, "ddg_dynamut2_outcome"
|
|
||||||
, "foldx_outcome")
|
|
||||||
|
|
||||||
#===================
|
|
||||||
# affinity cols
|
|
||||||
#===================
|
|
||||||
raw_cols_affinity = c("ligand_affinity_change"
|
|
||||||
, "mmcsm_lig"
|
|
||||||
, "mcsm_ppi2_affinity"
|
|
||||||
, "mcsm_na_affinity")
|
|
||||||
|
|
||||||
scaled_cols_affinity = c("affinity_scaled"
|
|
||||||
, "mmcsm_lig_scaled"
|
|
||||||
, "mcsm_ppi2_scaled"
|
|
||||||
, "mcsm_na_scaled" )
|
|
||||||
|
|
||||||
outcome_cols_affinity = c( "ligand_outcome"
|
|
||||||
, "mmcsm_lig_outcome"
|
|
||||||
, "mcsm_ppi2_outcome"
|
|
||||||
, "mcsm_na_outcome")
|
|
||||||
|
|
||||||
#===================
|
|
||||||
# conservation cols
|
|
||||||
#===================
|
|
||||||
# raw_cols_conservation = c("consurf_score"
|
|
||||||
# , "snap2_score"
|
|
||||||
# , "provean_score")
|
|
||||||
#
|
|
||||||
# scaled_cols_conservation = c("consurf_scaled"
|
|
||||||
# , "snap2_scaled"
|
|
||||||
# , "provean_scaled")
|
|
||||||
#
|
|
||||||
# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether
|
|
||||||
# outcome_cols_conservation = c("provean_outcome"
|
|
||||||
# , "snap2_outcome"
|
|
||||||
# #consurf outcome doesn't exist
|
|
||||||
# )
|
|
||||||
|
|
||||||
###########################################################
|
|
||||||
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
|
|
||||||
, raw_cols_stability
|
|
||||||
, scaled_cols_stability
|
|
||||||
, outcome_cols_stability
|
|
||||||
, raw_cols_affinity
|
|
||||||
, scaled_cols_affinity
|
|
||||||
, outcome_cols_affinity)]
|
|
||||||
|
|
||||||
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
|
|
||||||
, outcome_cols_stability)]
|
|
||||||
##############################################################
|
|
||||||
#####################
|
|
||||||
# Ensemble stability: outcome_cols_stability
|
|
||||||
#####################
|
|
||||||
# extract outcome cols and map numeric values to the categories
|
|
||||||
# Destabilising == 0, and stabilising == 1, so rescaling can let -1 be destabilising
|
|
||||||
df3_plot = df3[, cols_to_extract]
|
|
||||||
|
|
||||||
# assign numeric values to outcome
|
|
||||||
df3_plot[, outcome_cols_stability] <- sapply(df3_plot[, outcome_cols_stability]
|
|
||||||
, function(x){ifelse(x == "Destabilising", 0, 1)})
|
|
||||||
table(df3$duet_outcome)
|
|
||||||
table(df3_plot$duet_outcome)
|
|
||||||
#=====================================
|
|
||||||
# Stability (4 cols): average the scores
|
|
||||||
# across predictors ==> average by
|
|
||||||
# position ==> scale b/w -1 and 1
|
|
||||||
|
|
||||||
# column to average: ens_stability
|
|
||||||
#=====================================
|
|
||||||
cols_to_average = which(colnames(df3_plot)%in%outcome_cols_stability)
|
|
||||||
|
|
||||||
# ensemble average across predictors
|
|
||||||
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])
|
|
||||||
|
|
||||||
head(df3_plot$position); head(df3_plot$mutationinformation)
|
|
||||||
head(df3_plot$ens_stability)
|
|
||||||
table(df3_plot$ens_stability)
|
|
||||||
|
|
||||||
# ensemble average of predictors by position
|
# ensemble average of predictors by position
|
||||||
mean_ens_stability_by_position <- df3_plot %>%
|
avg_stability_by_position <- df3 %>%
|
||||||
dplyr::group_by(position) %>%
|
dplyr::group_by(position) %>%
|
||||||
dplyr::summarize(avg_ens_stability = mean(ens_stability))
|
dplyr::summarize(avg_stability_scaled_pos = mean(avg_stability_scaled))
|
||||||
|
|
||||||
# REscale b/w -1 and 1
|
min(avg_stability_by_position$avg_stability_scaled_pos)
|
||||||
#en_stab_min = min(mean_ens_stability_by_position['avg_ens_stability'])
|
max(avg_stability_by_position$avg_stability_scaled_pos)
|
||||||
#en_stab_max = max(mean_ens_stability_by_position['avg_ens_stability'])
|
|
||||||
|
|
||||||
# scale the average stability value between -1 and 1
|
avg_stability_by_position['avg_stability_scaled_pos_scaled'] = lapply(avg_stability_by_position['avg_stability_scaled_pos']
|
||||||
# mean_ens_by_position['averaged_stability3_scaled'] = lapply(mean_ens_by_position['averaged_stability3']
|
|
||||||
# , function(x) ifelse(x < 0, x/abs(en3_min), x/en3_max))
|
|
||||||
|
|
||||||
mean_ens_stability_by_position['avg_ens_stability_scaled'] = lapply(mean_ens_stability_by_position['avg_ens_stability']
|
|
||||||
, function(x) {
|
, function(x) {
|
||||||
scales::rescale(x, to = c(-1,1)
|
scales::rescale_mid(x, to = c(-1,1)
|
||||||
#, from = c(en_stab_min,en_stab_max))
|
#, from = c(en_stab_min,en_stab_max))
|
||||||
|
, mid = 0
|
||||||
, from = c(0,1))
|
, from = c(0,1))
|
||||||
})
|
})
|
||||||
cat(paste0('Average stability scores:\n'
|
cat(paste0('Average stability scores:\n'
|
||||||
, head(mean_ens_stability_by_position['avg_ens_stability'])
|
, head(avg_stability_by_position['avg_stability_scaled_pos'])
|
||||||
, '\n---------------------------------------------------------------'
|
, '\n---------------------------------------------------------------'
|
||||||
, '\nAverage stability scaled scores:\n'
|
, '\nAverage stability scaled scores:\n'
|
||||||
, head(mean_ens_stability_by_position['avg_ens_stability_scaled'])))
|
, head(avg_stability_by_position['avg_stability_scaled_pos_scaled'])
|
||||||
|
))
|
||||||
|
|
||||||
|
all(avg_stability_by_position['avg_stability_scaled_pos'] == avg_stability_by_position['avg_stability_scaled_pos_scaled'])
|
||||||
|
|
||||||
# convert to a data frame
|
# convert to a data frame
|
||||||
mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position)
|
avg_stability_by_position = as.data.frame(avg_stability_by_position)
|
||||||
|
|
||||||
#FIXME: sanity checks
|
|
||||||
# TODO: predetermine the bounds
|
|
||||||
# l_bound_ens = min(mean_ens_stability_by_position['avg_ens_stability_scaled'])
|
|
||||||
# u_bound_ens = max(mean_ens_stability_by_position['avg_ens_stability_scaled'])
|
|
||||||
#
|
|
||||||
# if ( (l_bound_ens == -1) && (u_bound_ens == 1) ){
|
|
||||||
# cat(paste0("PASS: ensemble stability scores averaged by position and then scaled"
|
|
||||||
# , "\nmin ensemble averaged stability: ", l_bound_ens
|
|
||||||
# , "\nmax ensemble averaged stability: ", u_bound_ens))
|
|
||||||
# }else{
|
|
||||||
# cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
|
|
||||||
# , "\nmin ensemble averaged stability: ", l_bound_ens
|
|
||||||
# , "\nmax ensemble averaged stability: ", u_bound_ens))
|
|
||||||
# quit()
|
|
||||||
# }
|
|
||||||
##################################################################
|
##################################################################
|
||||||
# output
|
# output
|
||||||
#write.csv(combined_df, outfile_mean_ens_st_aff
|
#write.csv(combined_df, outfile_mean_ens_st_aff
|
||||||
write.csv(mean_ens_stability_by_position
|
write.csv(avg_stability_by_position
|
||||||
, outfile_mean_ens_st_aff
|
, outfile_mean_ens_st_aff
|
||||||
, row.names = F)
|
, row.names = F)
|
||||||
cat("Finished writing file:\n"
|
cat("Finished writing file:\n"
|
||||||
, outfile_mean_ens_st_aff
|
, outfile_mean_ens_st_aff
|
||||||
, "\nNo. of rows:", nrow(mean_ens_stability_by_position)
|
, "\nNo. of rows:", nrow(avg_stability_by_position)
|
||||||
, "\nNo. of cols:", ncol(mean_ens_stability_by_position))
|
, "\nNo. of cols:", ncol(avg_stability_by_position))
|
||||||
|
|
||||||
# end of script
|
# end of script
|
||||||
#===============================================================
|
#===============================================================
|
||||||
|
|
|
@ -1,5 +1,11 @@
|
||||||
#!/usr/bin/env Rscript
|
#!/usr/bin/env Rscript
|
||||||
|
|
||||||
|
#source("~/git/LSHTM_analysis/config/alr.R")
|
||||||
|
source("~/git/LSHTM_analysis/config/embb.R")
|
||||||
|
#source("~/git/LSHTM_analysis/config/katg.R")
|
||||||
|
#source("~/git/LSHTM_analysis/config/gid.R")
|
||||||
|
#source("~/git/LSHTM_analysis/config/pnca.R")
|
||||||
|
#source("~/git/LSHTM_analysis/config/rpob.R")
|
||||||
#########################################################
|
#########################################################
|
||||||
# TASK: Replace B-factors in the pdb file with the mean
|
# TASK: Replace B-factors in the pdb file with the mean
|
||||||
# normalised stability values.
|
# normalised stability values.
|
||||||
|
@ -22,25 +28,26 @@ cat(c(getwd(),"\n"))
|
||||||
library(bio3d)
|
library(bio3d)
|
||||||
require("getopt", quietly = TRUE) # cmd parse arguments
|
require("getopt", quietly = TRUE) # cmd parse arguments
|
||||||
#========================================================
|
#========================================================
|
||||||
#drug = "pyrazinamide"
|
#drug = ""
|
||||||
#gene = "pncA"
|
#gene = ""
|
||||||
|
|
||||||
# command line args
|
# # command line args
|
||||||
spec = matrix(c(
|
# spec = matrix(c(
|
||||||
"drug" , "d", 1, "character",
|
# "drug" , "d", 1, "character",
|
||||||
"gene" , "g", 1, "character"
|
# "gene" , "g", 1, "character"
|
||||||
), byrow = TRUE, ncol = 4)
|
# ), byrow = TRUE, ncol = 4)
|
||||||
|
#
|
||||||
opt = getopt(spec)
|
# opt = getopt(spec)
|
||||||
|
#
|
||||||
drug = opt$drug
|
# drug = opt$drug
|
||||||
gene = opt$gene
|
# gene = opt$gene
|
||||||
|
#
|
||||||
if(is.null(drug)|is.null(gene)) {
|
# if(is.null(drug)|is.null(gene)) {
|
||||||
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
# stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
||||||
}
|
# }
|
||||||
#========================================================
|
#========================================================
|
||||||
gene_match = paste0(gene,"_p.")
|
cat(gene)
|
||||||
|
gene_match = paste0(gene,"_p."); cat(gene_match)
|
||||||
cat(gene_match)
|
cat(gene_match)
|
||||||
|
|
||||||
#=============
|
#=============
|
||||||
|
@ -64,7 +71,6 @@ cat(paste0("Input file:", infile_pdb) )
|
||||||
|
|
||||||
in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stability.csv")
|
in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stability.csv")
|
||||||
infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability)
|
infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability)
|
||||||
|
|
||||||
cat(paste0("Input file:", infile_mean_stability) )
|
cat(paste0("Input file:", infile_mean_stability) )
|
||||||
|
|
||||||
#=======
|
#=======
|
||||||
|
@ -150,12 +156,12 @@ plot(density(df_duet$b)
|
||||||
#=============
|
#=============
|
||||||
|
|
||||||
#hist(my_df$averaged_duet
|
#hist(my_df$averaged_duet
|
||||||
hist(my_df$avg_ens_stability_scaled
|
hist(my_df$avg_stability_scaled_pos_scaled
|
||||||
, xlab = ""
|
, xlab = ""
|
||||||
, main = "mean stability values")
|
, main = "mean stability values")
|
||||||
|
|
||||||
#plot(density(my_df$averaged_duet)
|
#plot(density(my_df$averaged_duet)
|
||||||
plot(density(my_df$avg_ens_stability_scaled)
|
plot(density(my_df$avg_stability_scaled_pos_scaled)
|
||||||
, xlab = ""
|
, xlab = ""
|
||||||
, main = "mean stability values")
|
, main = "mean stability values")
|
||||||
|
|
||||||
|
@ -178,7 +184,7 @@ plot(density(my_df$avg_ens_stability_scaled)
|
||||||
# this makes all the B-factor values in the non-matched positions as NA
|
# this makes all the B-factor values in the non-matched positions as NA
|
||||||
|
|
||||||
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
|
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||||
df_duet$b = my_df$avg_ens_stability_scaled[match(df_duet$resno, my_df$position)]
|
df_duet$b = my_df$avg_stability_scaled_pos_scaled[match(df_duet$resno, my_df$position)]
|
||||||
|
|
||||||
#=========
|
#=========
|
||||||
# step 2_P1
|
# step 2_P1
|
||||||
|
@ -194,8 +200,8 @@ na_rep = 2
|
||||||
df_duet$b[is.na(df_duet$b)] = na_rep
|
df_duet$b[is.na(df_duet$b)] = na_rep
|
||||||
|
|
||||||
# # sanity check: should be 0 and True
|
# # sanity check: should be 0 and True
|
||||||
# # duet and lig
|
# # duet
|
||||||
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
|
# if ( (sum(df_duet$b == na_rep) == b_na_duet) {
|
||||||
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
|
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
|
||||||
# } else {
|
# } else {
|
||||||
# print("FAIL: NA replacement in df_duet NOT successful")
|
# print("FAIL: NA replacement in df_duet NOT successful")
|
||||||
|
@ -205,20 +211,13 @@ df_duet$b[is.na(df_duet$b)] = na_rep
|
||||||
# max(df_duet$b); min(df_duet$b)
|
# max(df_duet$b); min(df_duet$b)
|
||||||
#
|
#
|
||||||
# # sanity checks: should be True
|
# # sanity checks: should be True
|
||||||
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
|
# if( (max(df_duet$b) == max(my_df$avg_stability_scaled_pos_scaled)) & (min(df_duet$b) == min(my_df$avg_stability_scaled_pos_scaled)) ){
|
||||||
# print("PASS: B-factors replaced correctly in df_duet")
|
# print("PASS: B-factors replaced correctly in df_duet")
|
||||||
# } else {
|
# } else {
|
||||||
# print ("FAIL: To replace B-factors in df_duet")
|
# print ("FAIL: To replace B-factors in df_duet")
|
||||||
# quit()
|
# quit()
|
||||||
# }
|
# }
|
||||||
|
|
||||||
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
|
|
||||||
# print("PASS: B-factors replaced correctly in df_lig")
|
|
||||||
# } else {
|
|
||||||
# print ("FAIL: To replace B-factors in df_lig")
|
|
||||||
# quit()
|
|
||||||
# }
|
|
||||||
|
|
||||||
#=========
|
#=========
|
||||||
# step 3_P1
|
# step 3_P1
|
||||||
#=========
|
#=========
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue