added metadata output for running multiple models
This commit is contained in:
parent
5dea35f97c
commit
4fe62c072b
7 changed files with 325 additions and 88 deletions
|
@ -108,6 +108,7 @@ def fsgs(input_df
|
||||||
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
|
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
|
||||||
, cv_method = skf_cv
|
, cv_method = skf_cv
|
||||||
, var_type = ['numerical', 'categorical' , 'mixed']
|
, var_type = ['numerical', 'categorical' , 'mixed']
|
||||||
|
, verbose = 3
|
||||||
):
|
):
|
||||||
'''
|
'''
|
||||||
returns
|
returns
|
||||||
|
|
|
@ -98,14 +98,25 @@ rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||||
|
|
||||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||||
|
|
||||||
|
|
||||||
|
#FIXME
|
||||||
|
#====================
|
||||||
|
# Import ProcessFunc
|
||||||
|
#====================
|
||||||
|
|
||||||
|
#from ProcessMultModelCl import *
|
||||||
#%%
|
#%%
|
||||||
# Multiple Classification - Model Pipeline
|
# Multiple Classification - Model Pipeline
|
||||||
def MultModelsCl(input_df, target, skf_cv
|
def MultModelsCl(input_df, target, skf_cv
|
||||||
, blind_test_df
|
, blind_test_df
|
||||||
, blind_test_target
|
, blind_test_target
|
||||||
|
, tts_split_type
|
||||||
|
, resampling_type = 'none' # default
|
||||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||||
, add_yn = True # adds target var class numbers
|
, add_yn = True # adds target var class numbers
|
||||||
, var_type = ['numerical', 'categorical','mixed']):
|
, var_type = ['numerical', 'categorical','mixed']
|
||||||
|
, return_formatted_output = True):
|
||||||
|
|
||||||
'''
|
'''
|
||||||
@ param input_df: input features
|
@ param input_df: input features
|
||||||
|
@ -151,37 +162,37 @@ def MultModelsCl(input_df, target, skf_cv
|
||||||
#======================================================
|
#======================================================
|
||||||
# Specify multiple Classification Models
|
# Specify multiple Classification Models
|
||||||
#======================================================
|
#======================================================
|
||||||
models = [('Logistic Regression' , LogisticRegression(**rs) )
|
models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||||
, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )
|
# , ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
|
||||||
, ('Gaussian NB' , GaussianNB() )
|
# , ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||||
, ('Naive Bayes' , BernoulliNB() )
|
# , ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||||
, ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
# , ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||||
, ('SVC' , SVC(**rs) )
|
# , ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||||
, ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
# , ('Gaussian NB' , GaussianNB() )
|
||||||
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
# , ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
||||||
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
# , ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
||||||
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
# , ('LDA' , LinearDiscriminantAnalysis() )
|
||||||
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
, ('Logistic Regression' , LogisticRegression(**rs) )
|
||||||
, ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
# , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||||
, n_estimators = 1000
|
# , ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
||||||
, bootstrap = True
|
# , ('Multinomial' , MultinomialNB() )
|
||||||
, oob_score = True
|
# , ('Naive Bayes' , BernoulliNB() )
|
||||||
, **njobs
|
# , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||||
, **rs
|
# , ('QDA' , QuadraticDiscriminantAnalysis() )
|
||||||
, max_features = 'auto') )
|
# , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||||
, ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder =False) )
|
# , ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
||||||
, ('LDA' , LinearDiscriminantAnalysis() )
|
# , n_estimators = 1000
|
||||||
, ('Multinomial' , MultinomialNB() )
|
# , bootstrap = True
|
||||||
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
# , oob_score = True
|
||||||
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
# , **njobs
|
||||||
, ('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
# , **rs
|
||||||
, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
|
# , max_features = 'auto') )
|
||||||
, ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
# , ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||||
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
# , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||||
, ('QDA' , QuadraticDiscriminantAnalysis() )
|
# , ('SVC' , SVC(**rs) )
|
||||||
, ('Ridge Classifier' , RidgeClassifier(**rs) )
|
# , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||||
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 10) )
|
# , ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder =False) )
|
||||||
]
|
]
|
||||||
|
|
||||||
mm_skf_scoresD = {}
|
mm_skf_scoresD = {}
|
||||||
|
|
||||||
|
@ -314,5 +325,34 @@ def MultModelsCl(input_df, target, skf_cv
|
||||||
mm_skf_scoresD[model_name]['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
|
mm_skf_scoresD[model_name]['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
|
||||||
#mm_skf_scoresD[model_name]['diff_mcc'] = train_test_diff_MCC
|
#mm_skf_scoresD[model_name]['diff_mcc'] = train_test_diff_MCC
|
||||||
|
|
||||||
return(mm_skf_scoresD)
|
#return(mm_skf_scoresD)
|
||||||
|
#%%
|
||||||
|
# ADD more info: meta data related to input and blind and resampling
|
||||||
|
|
||||||
|
# target numbers: training
|
||||||
|
yc1 = Counter(target)
|
||||||
|
yc1_ratio = yc1[0]/yc1[1]
|
||||||
|
|
||||||
|
# target numbers: test
|
||||||
|
yc2 = Counter(blind_test_target)
|
||||||
|
yc2_ratio = yc2[0]/yc2[1]
|
||||||
|
|
||||||
|
mm_skf_scoresD[model_name]['resampling'] = resampling_type
|
||||||
|
|
||||||
|
mm_skf_scoresD[model_name]['training_size'] = len(input_df)
|
||||||
|
mm_skf_scoresD[model_name]['trainingY_ratio'] = round(yc1_ratio, 2)
|
||||||
|
|
||||||
|
mm_skf_scoresD[model_name]['testSize'] = len(blind_test_df)
|
||||||
|
mm_skf_scoresD[model_name]['testY_ratio'] = round(yc2_ratio,2)
|
||||||
|
mm_skf_scoresD[model_name]['n_features'] = len(input_df.columns)
|
||||||
|
mm_skf_scoresD[model_name]['tts_split'] = tts_split_type
|
||||||
|
|
||||||
|
#return(mm_skf_scoresD)
|
||||||
|
#============================
|
||||||
|
# Process the dict to have WF
|
||||||
|
#============================
|
||||||
|
if return_formatted_output:
|
||||||
|
CV_BT_metaDF = ProcessMultModelCl(mm_skf_scoresD)
|
||||||
|
return(CV_BT_metaDF)
|
||||||
|
else:
|
||||||
|
return(mm_skf_scoresD)
|
|
@ -37,6 +37,8 @@ def setvars(gene,drug):
|
||||||
import argparse
|
import argparse
|
||||||
import re
|
import re
|
||||||
#%% GLOBALS
|
#%% GLOBALS
|
||||||
|
tts_split = "70/30"
|
||||||
|
|
||||||
rs = {'random_state': 42}
|
rs = {'random_state': 42}
|
||||||
njobs = {'n_jobs': 10}
|
njobs = {'n_jobs': 10}
|
||||||
|
|
||||||
|
@ -59,11 +61,9 @@ def setvars(gene,drug):
|
||||||
|
|
||||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||||
|
|
||||||
#%% FOR LATER: Combine ED logo data
|
#%% FOR LATER: Combine ED logo data
|
||||||
###########################################################################
|
###########################################################################
|
||||||
rs = {'random_state': 42}
|
|
||||||
njobs = {'n_jobs': 10}
|
|
||||||
homedir = os.path.expanduser("~")
|
homedir = os.path.expanduser("~")
|
||||||
|
|
||||||
geneL_basic = ['pnca']
|
geneL_basic = ['pnca']
|
||||||
|
@ -689,7 +689,8 @@ def setvars(gene,drug):
|
||||||
print('\n-------------------------------------------------------------'
|
print('\n-------------------------------------------------------------'
|
||||||
, '\nSuccessfully split data: ALL features'
|
, '\nSuccessfully split data: ALL features'
|
||||||
, '\nactual values: training set'
|
, '\nactual values: training set'
|
||||||
, '\nimputed values: blind test set'
|
, '\nSplit:', tts_split
|
||||||
|
#, '\nimputed values: blind test set'
|
||||||
|
|
||||||
, '\n\nTotal data size:', len(X) + len(X_bts)
|
, '\n\nTotal data size:', len(X) + len(X_bts)
|
||||||
|
|
||||||
|
|
|
@ -44,12 +44,6 @@ from ml_data_7030 import *
|
||||||
# TT run all ML clfs: baseline model
|
# TT run all ML clfs: baseline model
|
||||||
from MultModelsCl import MultModelsCl
|
from MultModelsCl import MultModelsCl
|
||||||
|
|
||||||
############################################################################
|
|
||||||
print('\n#####################################################################\n'
|
|
||||||
, '\nRunning ML analysis: feature groups '
|
|
||||||
, '\nGene name:', gene
|
|
||||||
, '\nDrug name:', drug)
|
|
||||||
|
|
||||||
#==================
|
#==================
|
||||||
# Specify outdir
|
# Specify outdir
|
||||||
#==================
|
#==================
|
||||||
|
@ -101,7 +95,13 @@ scoreBT_mapD = {'bts_mcc' : 'MCC'
|
||||||
bts_size = len(X_bts)
|
bts_size = len(X_bts)
|
||||||
yc2 = Counter(y_bts)
|
yc2 = Counter(y_bts)
|
||||||
yc2_ratio = yc2[0]/yc2[1]
|
yc2_ratio = yc2[0]/yc2[1]
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
print('\n#####################################################################\n'
|
||||||
|
, '\nRunning ML analysis: feature groups '
|
||||||
|
, '\nGene name:', gene
|
||||||
|
, '\nDrug name:', drug)
|
||||||
|
|
||||||
#%% Basic: No Oversampling
|
#%% Basic: No Oversampling
|
||||||
#================
|
#================
|
||||||
# Baseline
|
# Baseline
|
||||||
|
|
|
@ -5,45 +5,234 @@ Created on Tue May 24 08:11:05 2022
|
||||||
|
|
||||||
@author: tanu
|
@author: tanu
|
||||||
"""
|
"""
|
||||||
|
#%%
|
||||||
|
import os, sys
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import pprint as pp
|
||||||
|
from copy import deepcopy
|
||||||
|
from sklearn import linear_model
|
||||||
|
from sklearn import datasets
|
||||||
|
from collections import Counter
|
||||||
|
|
||||||
|
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||||
|
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
||||||
|
|
||||||
|
from sklearn.naive_bayes import BernoulliNB
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
||||||
|
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
||||||
|
from sklearn.naive_bayes import GaussianNB
|
||||||
|
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
||||||
|
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
||||||
|
|
||||||
|
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
||||||
|
from sklearn.neural_network import MLPClassifier
|
||||||
|
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
from xgboost import XGBClassifier
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||||
|
|
||||||
|
from sklearn.compose import ColumnTransformer
|
||||||
|
from sklearn.compose import make_column_transformer
|
||||||
|
|
||||||
|
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||||
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||||
|
|
||||||
|
# added
|
||||||
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
|
||||||
|
|
||||||
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||||
|
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||||
|
|
||||||
|
from sklearn.pipeline import Pipeline, make_pipeline
|
||||||
|
|
||||||
|
from sklearn.feature_selection import RFE, RFECV
|
||||||
|
|
||||||
|
import itertools
|
||||||
|
import seaborn as sns
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
from statistics import mean, stdev, median, mode
|
||||||
|
|
||||||
|
from imblearn.over_sampling import RandomOverSampler
|
||||||
|
from imblearn.under_sampling import RandomUnderSampler
|
||||||
|
from imblearn.over_sampling import SMOTE
|
||||||
|
from sklearn.datasets import make_classification
|
||||||
|
from imblearn.combine import SMOTEENN
|
||||||
|
from imblearn.combine import SMOTETomek
|
||||||
|
|
||||||
|
from imblearn.over_sampling import SMOTENC
|
||||||
|
from imblearn.under_sampling import EditedNearestNeighbours
|
||||||
|
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||||
|
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn.base import BaseEstimator
|
||||||
|
from sklearn.impute import KNNImputer as KNN
|
||||||
|
import json
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
###############################################################################
|
||||||
|
#gene = 'pncA'
|
||||||
|
#drug = 'pyrazinamide'
|
||||||
|
#total_mtblineage_uc = 8
|
||||||
|
|
||||||
|
#%% command line args: case sensitive
|
||||||
|
arg_parser = argparse.ArgumentParser()
|
||||||
|
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = '')
|
||||||
|
arg_parser.add_argument('-g', '--gene', help = 'gene name', default = '')
|
||||||
|
args = arg_parser.parse_args()
|
||||||
|
|
||||||
|
drug = args.drug
|
||||||
|
gene = args.gene
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#==================
|
||||||
|
# other vars
|
||||||
|
#==================
|
||||||
|
tts_split = '70/30'
|
||||||
|
OutFile_suffix = '7030_FS'
|
||||||
|
###############################################################################
|
||||||
|
#==================
|
||||||
|
# Import data
|
||||||
|
#==================
|
||||||
|
from ml_data_7030 import *
|
||||||
|
setvars(gene,drug)
|
||||||
|
from ml_data_7030 import *
|
||||||
|
|
||||||
|
# from YC run_all_ML: run locally
|
||||||
|
#from UQ_yc_RunAllClfs import run_all_ML
|
||||||
|
|
||||||
|
#==========================================
|
||||||
|
# Import ML function: Feature selection
|
||||||
|
#==========================================
|
||||||
|
# TT run all ML clfs: feature selection
|
||||||
|
from FS import fsgs
|
||||||
|
|
||||||
|
#==================
|
||||||
|
# Specify outdir
|
||||||
|
#==================
|
||||||
|
outdir_ml = outdir + 'ml/tts_7030/fs/'
|
||||||
|
print('\nOutput directory:', outdir_ml)
|
||||||
|
OutFileFS = outdir_ml + gene.lower() + '_FS_' + OutFile_suffix + '.json'
|
||||||
|
|
||||||
|
############################################################################
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
#====================
|
#====================
|
||||||
# single model CALL
|
# single model CALL
|
||||||
#====================
|
#====================
|
||||||
a_fs0 = fsgs(input_df = X
|
# aFS = fsgs(input_df = X
|
||||||
, target = y
|
# , target = y
|
||||||
, param_gridLd = [{'fs__min_features_to_select' : [1]}]
|
# , param_gridLd = [{'fs__min_features_to_select': [1]}]
|
||||||
, blind_test_df = X_bts
|
# , blind_test_df = X_bts
|
||||||
, blind_test_target = y_bts
|
# , blind_test_target = y_bts
|
||||||
, estimator = LogisticRegression(**rs)
|
# , estimator = LogisticRegression(**rs)
|
||||||
, use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
|
# , use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
|
||||||
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
|
# , custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
|
||||||
, cv_method = skf_cv
|
# , cv_method = skf_cv
|
||||||
, var_type = 'mixed'
|
# , var_type = 'mixed'
|
||||||
)
|
# )
|
||||||
|
#############
|
||||||
|
# Loop
|
||||||
|
############
|
||||||
|
# models_all = [
|
||||||
|
# ('XGBoost' , XGBClassifier(**rs, **njobs
|
||||||
|
# , n_estimators = 100 # wasn't there
|
||||||
|
# , max_depyth = 3 # wasn't there
|
||||||
|
# , verbosity = 3
|
||||||
|
# #, use_label_encoder = False)
|
||||||
|
# ) )
|
||||||
|
# ]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||||
|
##, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
|
||||||
|
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||||
|
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||||
|
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||||
|
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||||
|
#, ('Gaussian NB' , GaussianNB() )
|
||||||
|
#, ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
||||||
|
#, ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
||||||
|
, ('LDA' , LinearDiscriminantAnalysis() )
|
||||||
|
, ('Logistic Regression' , LogisticRegression(**rs) )
|
||||||
|
, ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||||
|
#, ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
||||||
|
#, ('Multinomial' , MultinomialNB() )
|
||||||
|
#, ('Naive Bayes' , BernoulliNB() )
|
||||||
|
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||||
|
#, ('QDA' , QuadraticDiscriminantAnalysis() )
|
||||||
|
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
|
||||||
|
, ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
||||||
|
, n_estimators = 1000
|
||||||
|
, bootstrap = True
|
||||||
|
, oob_score = True
|
||||||
|
, **njobs
|
||||||
|
, **rs
|
||||||
|
, max_features = 'auto') )
|
||||||
|
, ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||||
|
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||||
|
#, ('SVC' , SVC(**rs) )
|
||||||
|
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||||
|
# , ('XGBoost' , XGBClassifier(**rs, **njobs, verbosity = 3
|
||||||
|
# , use_label_encoder = False) )
|
||||||
|
]
|
||||||
|
|
||||||
|
print('\n#####################################################################'
|
||||||
|
, '\nRunning Feature Selection using classfication models (n):', len(models)
|
||||||
|
, '\nGene:' , gene.lower()
|
||||||
|
, '\nDrug:' , drug
|
||||||
|
, '\nSplit:' , tts_split
|
||||||
|
,'\n####################################################################')
|
||||||
|
|
||||||
|
for m in models:
|
||||||
|
print(m)
|
||||||
|
print('\n====================================================================\n')
|
||||||
|
|
||||||
|
out_fsD = {}
|
||||||
|
index = 1
|
||||||
|
for model_name, model_fn in models:
|
||||||
|
print('\nRunning classifier with FS:', index
|
||||||
|
, '\nModel_name:' , model_name
|
||||||
|
, '\nModel func:' , model_fn)
|
||||||
|
#, '\nList of models:', models)
|
||||||
|
index = index+1
|
||||||
|
|
||||||
|
out_fsD[model_name] = fsgs(input_df = X
|
||||||
|
, target = y
|
||||||
|
, param_gridLd = [{'fs__min_features_to_select': [1]}]
|
||||||
|
, blind_test_df = X_bts
|
||||||
|
, blind_test_target = y_bts
|
||||||
|
, estimator = model_fn
|
||||||
|
, use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
|
||||||
|
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
|
||||||
|
, cv_method = skf_cv
|
||||||
|
, var_type = 'mixed'
|
||||||
|
)
|
||||||
|
out_fsD
|
||||||
|
#%% Checking results dict
|
||||||
|
tot_Ditems = sum(len(v) for v in out_fsD.values())
|
||||||
|
|
||||||
|
checkL = []
|
||||||
|
for k, v in out_fsD.items():
|
||||||
|
l = [len(out_fsD[k])]
|
||||||
|
checkL = checkL + l
|
||||||
|
n_sD = len(checkL) # no. of subDicts
|
||||||
|
l_sD = list(set(checkL)) # length of each subDict
|
||||||
|
|
||||||
|
print('\nTotal no.of subdicts:', n_sD)
|
||||||
|
if len(l_sD) == 1 and tot_Ditems == n_sD*l_sD[0]:
|
||||||
|
print('\nPASS: successful run for all Classifiers'
|
||||||
|
, '\nLength of each subdict:', l_sD)
|
||||||
|
|
||||||
|
print('\nSuccessfully ran Feature selection on', len(models), 'classifiers'
|
||||||
|
, '\nGene:', gene.lower()
|
||||||
|
, '\nDrug:', drug
|
||||||
|
, '\nSplit type:', tts_split
|
||||||
|
, '\nTotal fs models results:', len(out_fsD)
|
||||||
|
, '\nTotal items in output:', sum(len(v) for v in out_fsD.values()) )
|
||||||
|
|
||||||
|
|
||||||
##############################################################################
|
##############################################################################
|
||||||
|
@ -52,14 +241,15 @@ a_fs0 = fsgs(input_df = X
|
||||||
# Write final output file
|
# Write final output file
|
||||||
# https://stackoverflow.com/questions/19201290/how-to-save-a-dictionary-to-a-file
|
# https://stackoverflow.com/questions/19201290/how-to-save-a-dictionary-to-a-file
|
||||||
#========================================
|
#========================================
|
||||||
# #output final dict as a json
|
# Output final dict as a json
|
||||||
# outFile = 'LR_FS.json'
|
print('\nWriting Final output file (json):', OutFileFS)
|
||||||
# with open(outFile, 'w') as f:
|
with open(OutFileFS, 'w') as f:
|
||||||
# f.write(json.dumps(output_modelD,cls=NpEncoder))
|
f.write(json.dumps(out_fsD
|
||||||
|
# , cls = NpEncoder
|
||||||
|
))
|
||||||
|
|
||||||
# # read json
|
# # read json
|
||||||
# file = 'LR_FS.json'
|
# with open(OutFileFS, 'r') as f:
|
||||||
# with open(file, 'r') as f:
|
|
||||||
# data = json.load(f)
|
# data = json.load(f)
|
||||||
##############################################################################
|
##############################################################################
|
||||||
|
|
||||||
|
|
|
@ -5,12 +5,12 @@
|
||||||
# captures error: 2>$1
|
# captures error: 2>$1
|
||||||
# omitted drtype_labels
|
# omitted drtype_labels
|
||||||
=================================
|
=================================
|
||||||
./run_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_7030.txt
|
time ./run_7030.py -g pncA -d pyrazinamide 2>&1 | tee log_pnca_7030.txt
|
||||||
./run_7030.py -g embB -d ethambutol 2>&1 | tee log_embb_7030.txt
|
time ./run_7030.py -g embB -d ethambutol 2>&1 | tee log_embb_7030.txt
|
||||||
./run_7030.py -g katG -d isoniazid 2>&1 | tee log_katg_7030.txt
|
time ./run_7030.py -g katG -d isoniazid 2>&1 | tee log_katg_7030.txt
|
||||||
./run_7030.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_7030.txt
|
time ./run_7030.py -g rpoB -d rifampicin 2>&1 | tee log_rpob_7030.txt
|
||||||
./run_7030.py -g gid -d streptomycin 2>&1 | tee log_gid_7030.txt
|
time ./run_7030.py -g gid -d streptomycin 2>&1 | tee log_gid_7030.txt
|
||||||
./run_7030.py -g alr -d cycloserine 2>&1 | tee log_alr_7030.txt
|
time ./run_7030.py -g alr -d cycloserine 2>&1 | tee log_alr_7030.txt
|
||||||
# alr: # ERROR, as expected, too few values!
|
# alr: # ERROR, as expected, too few values!
|
||||||
# gid: problems
|
# gid: problems
|
||||||
########################################################################
|
########################################################################
|
||||||
|
@ -69,5 +69,13 @@
|
||||||
# Date: 18/05/2022
|
# Date: 18/05/2022
|
||||||
# captures error: 2>$1
|
# captures error: 2>$1
|
||||||
=================================
|
=================================
|
||||||
|
########################################################################
|
||||||
|
########################################################################
|
||||||
|
########################################################################
|
||||||
|
|
||||||
|
|
||||||
|
# running feature selection
|
||||||
|
# Split:70/30
|
||||||
|
time ./run_FS.py -g pncA -d pyrazinamide 2>&1 | tee log_FS_pnca_7030.txt
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -61,9 +61,6 @@ a_fs0 = fsgs(input_df = X
|
||||||
, var_type = 'mixed'
|
, var_type = 'mixed'
|
||||||
)
|
)
|
||||||
###############################################
|
###############################################
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
##############################################################################
|
##############################################################################
|
||||||
# my function CALL
|
# my function CALL
|
||||||
#import fsgs from UQ_FS_fn
|
#import fsgs from UQ_FS_fn
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue