aaded scripts for FS including test call, etc

This commit is contained in:
Tanushree Tunstall 2022-06-23 14:53:01 +01:00
parent 8fe0048328
commit 5dea35f97c
3 changed files with 575 additions and 0 deletions

391
scripts/ml/FS.py Executable file
View file

@ -0,0 +1,391 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 23 23:25:26 2022
@author: tanu
"""
import os, sys
import pandas as pd
import numpy as np
import pprint as pp
from copy import deepcopy
from sklearn import linear_model
from sklearn import datasets
from collections import Counter
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.compose import make_column_transformer
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
# added
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.feature_selection import RFE, RFECV
import itertools
import seaborn as sns
import matplotlib.pyplot as plt
from statistics import mean, stdev, median, mode
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from imblearn.combine import SMOTEENN
from imblearn.combine import SMOTETomek
from imblearn.over_sampling import SMOTENC
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
from sklearn.model_selection import GridSearchCV
from sklearn.base import BaseEstimator
from sklearn.impute import KNNImputer as KNN
import json
import argparse
import re
#####################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
, 'fscore' : make_scorer(f1_score)
, 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score)
, 'accuracy' : make_scorer(accuracy_score)
, 'roc_auc' : make_scorer(roc_auc_score)
, 'jcc' : make_scorer(jaccard_score)
})
skf_cv = StratifiedKFold(n_splits = 10
#, shuffle = False, random_state= None)
, shuffle = True,**rs)
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
, n_repeats = 3
, **rs)
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
###############################################################################
def fsgs(input_df
, target
, param_gridLd = [{'fs__min_features_to_select' : [1]}]
, blind_test_df = pd.DataFrame()
, blind_test_target = pd.Series(dtype = 'int64')
, estimator = LogisticRegression(**rs) # placeholder
, use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
, cv_method = skf_cv
, var_type = ['numerical', 'categorical' , 'mixed']
):
'''
returns
Dict containing results from FS and hyperparam tuning for a given estiamtor
>>> ADD MORE <<<
optimised/selected based on mcc
'''
###########################################################################
#================================================
# Determine categorical and numerical features
#================================================
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
categorical_ix
#================================================
# Determine preprocessing steps ~ var_type
#================================================
if var_type == 'numerical':
t = [('num', MinMaxScaler(), numerical_ix)]
if var_type == 'categorical':
t = [('cat', OneHotEncoder(), categorical_ix)]
if var_type == 'mixed':
t = [('cat', OneHotEncoder(), categorical_ix)
, ('num', MinMaxScaler(), numerical_ix)]
col_transform = ColumnTransformer(transformers = t
, remainder='passthrough')
###########################################################################
#==================================================
# Create var_type ~ column names
# using one hot encoder with RFECV means
# the names internally are lost. Hence
# fit col_transformeer to my input_df and get
# all the column names out and stored in a var
# to allow the 'selected features' to be subsetted
# from the numpy boolean array
#=================================================
col_transform.fit(input_df)
col_transform.get_feature_names_out()
var_type_colnames = col_transform.get_feature_names_out()
var_type_colnames = pd.Index(var_type_colnames)
if var_type == 'mixed':
print('\nVariable type is:', var_type
, '\nNo. of columns in input_df:', len(input_df.columns)
, '\nNo. of columns post one hot encoder:', len(var_type_colnames))
else:
print('\nNo. of columns in input_df:', len(input_df.columns))
#==================================
# Build FS with supplied estimator
#==================================
if use_fs:
fs = custom_fs
else:
fs = RFECV(estimator, cv = skf_cv, scoring = 'matthews_corrcoef')
#==================================
# Build basic param grid
#==================================
# param_gridD = [
# {'fs__min_features_to_select' : [1]
# }]
############################################################################
# Create Pipeline object
pipe = Pipeline([
('pre', col_transform),
('fs', fs),
('clf', estimator)])
############################################################################
# Define GridSearchCV
gscv_fs = GridSearchCV(pipe
#, param_gridLd = param_gridD
, param_gridLd
, cv = cv_method
, scoring = scoring_fn
, refit = 'mcc'
, verbose = 3
, return_train_score = True
, **njobs)
gscv_fs.fit(input_df, target)
###########################################################################
# Get best param and scores out
gscv_fs.best_params_
gscv_fs.best_score_
# Training best score corresponds to the max of the mean_test<score>
train_bscore = round(gscv_fs.best_score_, 2); train_bscore
print('\nTraining best score (MCC):', train_bscore)
gscv_fs.cv_results_['mean_test_mcc']
round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
round(np.nanmax(gscv_fs.cv_results_['mean_test_mcc']),2)
check_train_score = [round(gscv_fs.cv_results_['mean_test_mcc'].max(),2)
, round(np.nanmax(gscv_fs.cv_results_['mean_test_mcc']),2)]
check_train_score = np.nanmax(check_train_score)
# Training results
gscv_tr_resD = gscv_fs.cv_results_
mod_refit_param = gscv_fs.refit
# sanity check
if train_bscore == check_train_score:
print('\nVerified training score (MCC):', train_bscore )
else:
sys.exit('\nTraining score could not be internatlly verified. Please check training results dict')
#-------------------------
# Dict of CV results
#-------------------------
cv_allD = gscv_fs.cv_results_
cvdf0 = pd.DataFrame(cv_allD)
cvdf = cvdf0.filter(regex='mean_test', axis = 1)
cvdfT = cvdf.T
cvdfT.columns = ['cv_score']
cvdfTr = cvdfT.loc[:,'cv_score'].round(decimals = 2) # round values
cvD = cvdfTr.to_dict()
print('\n CV results dict generated for:', len(scoring_fn), 'scores'
, '\nThese are:', scoring_fn.keys())
#-------------------------
# Blind test: REAL check!
#-------------------------
#tp = gscv_fs.predict(X_bts)
tp = gscv_fs.predict(blind_test_df)
print('\nMCC on Blind test:' , round(matthews_corrcoef(blind_test_target, tp),2))
print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, tp),2))
#=================
# info extraction
#=================
# gives input vals??
gscv_fs._check_n_features
# gives gscv params used
gscv_fs._get_param_names()
# gives ??
gscv_fs.best_estimator_
gscv_fs.best_params_ # gives best estimator params as a dict
gscv_fs.best_estimator_._final_estimator # similar to above, doesn't contain max_iter
gscv_fs.best_estimator_.named_steps['fs'].get_support()
gscv_fs.best_estimator_.named_steps['fs'].ranking_ # array of ranks for the features
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.mean()
gscv_fs.best_estimator_.named_steps['fs'].grid_scores_.max()
#gscv_fs.best_estimator_.named_steps['fs'].grid_scores_
estimator_mask = gscv_fs.best_estimator_.named_steps['fs'].get_support()
############################################################################
#============
# FS results
#============
# Now get the features out
#--------------
# All features
#--------------
all_features = gscv_fs.feature_names_in_
n_all_features = gscv_fs.n_features_in_
#all_features = gsfit.feature_names_in_
#--------------
# Selected features by the classifier
# Important to have var_type_colnames here
#----------------
#sel_features = X.columns[gscv_fs.best_estimator_.named_steps['fs'].get_support()] 3 only for numerical df
sel_features = var_type_colnames[gscv_fs.best_estimator_.named_steps['fs'].get_support()]
n_sf = gscv_fs.best_estimator_.named_steps['fs'].n_features_
#--------------
# Get model name
#--------------
model_name = gscv_fs.best_estimator_.named_steps['clf']
b_model_params = gscv_fs.best_params_
print('\n========================================'
, '\nRunning model:'
, '\nModel name:', model_name
, '\n==============================================='
, '\nRunning feature selection with RFECV for model'
, '\nTotal no. of features in model:', len(all_features)
, '\nThese are:\n', all_features, '\n\n'
, '\nNo of features for best model: ', n_sf
, '\nThese are:', sel_features, '\n\n'
, '\nBest Model hyperparams:', b_model_params
)
###########################################################################
############################## OUTPUT #####################################
###########################################################################
#=========================
# Blind test: BTS results
#=========================
# Build the final results with all scores for a feature selected model
#bts_predict = gscv_fs.predict(X_bts)
bts_predict = gscv_fs.predict(blind_test_df)
print('\nMCC on Blind test:' , round(matthews_corrcoef(blind_test_target, bts_predict),2))
print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, bts_predict),2))
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
# Diff b/w train and bts test scores
train_test_diff = train_bscore - bts_mcc_score
print('\nDiff b/w train and blind test score (MCC):', train_test_diff)
lr_btsD ={}
#lr_btsD['bts_mcc'] = bts_mcc_score
lr_btsD['bts_fscore'] = round(f1_score(blind_test_target, bts_predict),2)
lr_btsD['bts_precision'] = round(precision_score(blind_test_target, bts_predict),2)
lr_btsD['bts_recall'] = round(recall_score(blind_test_target, bts_predict),2)
lr_btsD['bts_accuracy'] = round(accuracy_score(blind_test_target, bts_predict),2)
lr_btsD['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
lr_btsD['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
lr_btsD
#===========================
# Add FS related model info
#===========================
model_namef = str(model_name)
# FIXME: doesn't tell you which it has chosen
fs_methodf = str(gscv_fs.best_estimator_.named_steps['fs'])
all_featuresL = list(all_features)
fs_res_arrayf = str(list( gscv_fs.best_estimator_.named_steps['fs'].get_support()))
fs_res_array_rankf = str(list( gscv_fs.best_estimator_.named_steps['fs'].ranking_))
sel_featuresf = list(sel_features)
n_sf = int(n_sf)
output_modelD = {'model_name': model_namef
, 'model_refit_param': mod_refit_param
, 'Best_model_params': b_model_params
, 'n_all_features': n_all_features
, 'fs_method': fs_methodf
, 'fs_res_array': fs_res_arrayf
, 'fs_res_array_rank': fs_res_array_rankf
, 'all_feature_names': all_featuresL
, 'n_sel_features': n_sf
, 'sel_features_names': sel_featuresf}
#output_modelD
#========================================
# Update output_modelD with bts_results
#========================================
output_modelD.update(lr_btsD)
output_modelD
output_modelD['train_score (MCC)'] = train_bscore
output_modelD['bts_mcc'] = bts_mcc_score
output_modelD['train_bts_diff'] = round(train_test_diff,2)
print(output_modelD)
nlen = len(output_modelD)
#========================================
# Update output_modelD with cv_results
#========================================
output_modelD.update(cvD)
if (len(output_modelD) == nlen + len(cvD)):
print('\nFS run complete for model:', estimator
, '\nFS using:', fs
, '\nOutput dict size:', len(output_modelD))
return(output_modelD)
else:
sys.exit('\nFAIL:numbers mismatch output dict length not as expected. Please check')

65
scripts/ml/run_FS.py Executable file
View file

@ -0,0 +1,65 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 24 08:11:05 2022
@author: tanu
"""
###############################################################################
#====================
# single model CALL
#====================
a_fs0 = fsgs(input_df = X
, target = y
, param_gridLd = [{'fs__min_features_to_select' : [1]}]
, blind_test_df = X_bts
, blind_test_target = y_bts
, estimator = LogisticRegression(**rs)
, use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
, cv_method = skf_cv
, var_type = 'mixed'
)
##############################################################################
#%% json output
#========================================
# Write final output file
# https://stackoverflow.com/questions/19201290/how-to-save-a-dictionary-to-a-file
#========================================
# #output final dict as a json
# outFile = 'LR_FS.json'
# with open(outFile, 'w') as f:
# f.write(json.dumps(output_modelD,cls=NpEncoder))
# # read json
# file = 'LR_FS.json'
# with open(file, 'r') as f:
# data = json.load(f)
##############################################################################

119
scripts/ml/scrMult_CALL.py Executable file
View file

@ -0,0 +1,119 @@
fs_test = RFECV(DecisionTreeClassifier(**rs)
, cv = StratifiedKFold(n_splits = 10, shuffle = True,**rs)
, scoring = 'matthews_corrcoef')
models = [('Logistic Regression' , LogisticRegression(**rs) )]
#, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )]
for m in models:
print(m)
print('\n================================================================\n')
index = 1
for model_name, model_fn in models:
print('\nRunning classifier:', index
, '\nModel_name:' , model_name
, '\nModel func:' , model_fn)
#, '\nList of models:', models)
index = index+1
fs2 = RFECV(model_fn
, cv = skf_cv
, scoring = 'matthews_corrcoef')
from sklearn.datasets import make_friedman1
from sklearn.datasets import load_iris
X_eg, y_eg = load_iris(return_X_y=True)
#X_eg, y_eg = make_friedman1(n_samples=50, n_features=10, random_state=0)
fs2.fit(X_eg,y_eg)
fs2.support_
fs2.ranking_
###############################################################################
# LR
a_fs = fsgs(input_df = X
, target = y
#, param_gridLd = [{'fs__min_features_to_select' : []}]
, blind_test_df = X_bts
, blind_test_target = y_bts
#, estimator = RandomForestClassifier(**rs, **njobs, bootstrap = True, oob_score = True)
, estimator = LogisticRegression(**rs)
, use_fs = False # set True to use DT as a RFECV estimator
, var_type = 'mixed')
a_fs.keys()
a_fsDF = pd.DataFrame(a_fs.items()) # LR
a_fsDF2 = pd.DataFrame(a_fs2.items()) # use_FS= True
a_fsDF3 = pd.DataFrame(a_fs3.items()) # RF
# this one
a_fs0 = fsgs(input_df = X
, target = y
, param_gridLd = [{'fs__min_features_to_select' : [1]}]
, blind_test_df = X_bts
, blind_test_target = y_bts
, estimator = LogisticRegression(**rs)
, use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
, cv_method = skf_cv
, var_type = 'mixed'
)
###############################################
##############################################################################
# my function CALL
#import fsgs from UQ_FS_fn
# RFECV by default uses the estimator provided, custom option to provide fs model using use_fs and
a_fs = fsgs(input_df = X
, target = y
, param_gridLd = [{'fs__min_features_to_select' : [1]}]
, blind_test_df = X_bts
, blind_test_target = y_bts
, estimator = LogisticRegression(**rs)
#, use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
, use_fs = True, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
, cv_method = skf_cv
, var_type = 'mixed'
)
a_fs.keys()
a_fs2.keys()
a_fs3.keys()
a_fsDF = pd.DataFrame(a_fs.items()) # LR
a_fsDF.columns = ['parameter', 'param_value']
a_fs2DF2 = pd.DataFrame(a_fs2.items()) # use_FS= True
a_fs2DF2.columns = ['parameter', 'param_value']
a_fsDF3 = pd.DataFrame(a_fs3.items()) # RF
##############
a_mask = a_fs['fs_res_array']
a_fsDF.loc[a_fsDF['parameter'] == 'fs_res_array']
mod_selF = a_fs2DF2.loc[a_fsDF['parameter'] == 'sel_features_names']; mod_selF
mod_selFT = mod_selF.T
# subset keys
#keys_to_extract = ['model_name', 'fs_method', 'sel_features_names', 'all_feature_names', 'fs_res_array']
keys_to_extract = ['fs_method', 'sel_features_names']
a_subset = {key: a_fs2[key] for key in keys_to_extract}
a_subsetDF = pd.DataFrame(a_subset); a_subsetDF
mod_fs_method = a_fs2['fs_method']
fs_name = re.search('estimator=(\w+)',mod_fs_method)
fs_namefN = fs_namef.group(1)
print('\nFS method:', fs_namefN)
fsDF = a_subsetDF[['sel_features_names']];fsDF
fsDF.columns = [fs_namefN+'_FS']
fsDF.columns; fsDF
###############################