added metadata output for running multiple models

This commit is contained in:
Tanushree Tunstall 2022-06-23 21:25:00 +01:00
parent 5dea35f97c
commit 4fe62c072b
7 changed files with 325 additions and 88 deletions

View file

@ -98,14 +98,25 @@ rskf_cv = RepeatedStratifiedKFold(n_splits = 10
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#FIXME
#====================
# Import ProcessFunc
#====================
#from ProcessMultModelCl import *
#%%
# Multiple Classification - Model Pipeline
def MultModelsCl(input_df, target, skf_cv
, blind_test_df
, blind_test_target
, tts_split_type
, resampling_type = 'none' # default
, add_cm = True # adds confusion matrix based on cross_val_predict
, add_yn = True # adds target var class numbers
, var_type = ['numerical', 'categorical','mixed']):
, var_type = ['numerical', 'categorical','mixed']
, return_formatted_output = True):
'''
@ param input_df: input features
@ -151,37 +162,37 @@ def MultModelsCl(input_df, target, skf_cv
#======================================================
# Specify multiple Classification Models
#======================================================
models = [('Logistic Regression' , LogisticRegression(**rs) )
, ('Logistic RegressionCV' , LogisticRegressionCV(**rs) )
, ('Gaussian NB' , GaussianNB() )
, ('Naive Bayes' , BernoulliNB() )
, ('K-Nearest Neighbors' , KNeighborsClassifier() )
, ('SVC' , SVC(**rs) )
, ('MLP' , MLPClassifier(max_iter = 500, **rs) )
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
, ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
, n_estimators = 1000
, bootstrap = True
, oob_score = True
, **njobs
, **rs
, max_features = 'auto') )
, ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder =False) )
, ('LDA' , LinearDiscriminantAnalysis() )
, ('Multinomial' , MultinomialNB() )
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
, ('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
, ('Gaussian Process' , GaussianProcessClassifier(**rs) )
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
, ('QDA' , QuadraticDiscriminantAnalysis() )
, ('Ridge Classifier' , RidgeClassifier(**rs) )
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 10) )
]
models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
# , ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
# , ('Decision Tree' , DecisionTreeClassifier(**rs) )
# , ('Extra Tree' , ExtraTreeClassifier(**rs) )
# , ('Extra Trees' , ExtraTreesClassifier(**rs) )
# , ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
# , ('Gaussian NB' , GaussianNB() )
# , ('Gaussian Process' , GaussianProcessClassifier(**rs) )
# , ('K-Nearest Neighbors' , KNeighborsClassifier() )
# , ('LDA' , LinearDiscriminantAnalysis() )
, ('Logistic Regression' , LogisticRegression(**rs) )
# , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
# , ('MLP' , MLPClassifier(max_iter = 500, **rs) )
# , ('Multinomial' , MultinomialNB() )
# , ('Naive Bayes' , BernoulliNB() )
# , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
# , ('QDA' , QuadraticDiscriminantAnalysis() )
# , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000 ) )
# , ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
# , n_estimators = 1000
# , bootstrap = True
# , oob_score = True
# , **njobs
# , **rs
# , max_features = 'auto') )
# , ('Ridge Classifier' , RidgeClassifier(**rs) )
# , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
# , ('SVC' , SVC(**rs) )
# , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
# , ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder =False) )
]
mm_skf_scoresD = {}
@ -314,5 +325,34 @@ def MultModelsCl(input_df, target, skf_cv
mm_skf_scoresD[model_name]['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
#mm_skf_scoresD[model_name]['diff_mcc'] = train_test_diff_MCC
return(mm_skf_scoresD)
#return(mm_skf_scoresD)
#%%
# ADD more info: meta data related to input and blind and resampling
# target numbers: training
yc1 = Counter(target)
yc1_ratio = yc1[0]/yc1[1]
# target numbers: test
yc2 = Counter(blind_test_target)
yc2_ratio = yc2[0]/yc2[1]
mm_skf_scoresD[model_name]['resampling'] = resampling_type
mm_skf_scoresD[model_name]['training_size'] = len(input_df)
mm_skf_scoresD[model_name]['trainingY_ratio'] = round(yc1_ratio, 2)
mm_skf_scoresD[model_name]['testSize'] = len(blind_test_df)
mm_skf_scoresD[model_name]['testY_ratio'] = round(yc2_ratio,2)
mm_skf_scoresD[model_name]['n_features'] = len(input_df.columns)
mm_skf_scoresD[model_name]['tts_split'] = tts_split_type
#return(mm_skf_scoresD)
#============================
# Process the dict to have WF
#============================
if return_formatted_output:
CV_BT_metaDF = ProcessMultModelCl(mm_skf_scoresD)
return(CV_BT_metaDF)
else:
return(mm_skf_scoresD)