separted cols

This commit is contained in:
Tanushree Tunstall 2022-08-01 14:09:46 +01:00
parent e750ee59aa
commit 0d8979dfcb
2 changed files with 129 additions and 156 deletions

View file

@ -60,145 +60,87 @@ all_colnames = as.data.frame(colnames(df3))
common_cols = c("mutationinformation"
, "position"
, "dst_mode"
#, "mutation_info_labels"
, "mutation_info_labels"
, "sensitivity"
, "ligand_distance")
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
scaled_cols = c("duet_scaled" , "duet_stability_change"
, "deepddg_scaled" , "deepddg"
, "ddg_dynamut2_scaled" , "ddg_dynamut2"
, "foldx_scaled" , "ddg_foldx"
, "affinity_scaled" , "ligand_affinity_change"
, "mmcsm_lig_scaled" , "mmcsm_lig"
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
, "mcsm_na_scaled" , "mcsm_na_affinity"
#, "consurf_scaled" , "consurf_score"
#, "snap2_scaled" , "snap2_score"
#, "provean_scaled" , "provean_score"
)
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
outcome_cols_aff = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome"
#, "ddg_foldx", "foldx_scaled"
, "ligand_outcome"
, "mmcsm_lig_outcome"
, "mcsm_ppi2_outcome"
, "mcsm_na_outcome"
# consurf outcome doesn't exist
#,"provean_outcome"
#,"snap2_outcome"
)
#===================
# stability cols
#===================
raw_cols_stability = c("duet_stability_change"
, "deepddg"
, "ddg_dynamut2"
, "ddg_foldx")
scaled_cols_stability = c("duet_scaled"
, "deepddg_scaled"
, "ddg_dynamut2_scaled"
, "foldx_scaled")
outcome_cols_stability = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome")
#===================
# affinity cols
#===================
raw_cols_affinity = c("ligand_affinity_change"
, "mmcsm_lig"
, "mcsm_ppi2_affinity"
, "mcsm_na_affinity")
scaled_cols_affinity = c("affinity_scaled"
, "mmcsm_lig_scaled"
, "mcsm_ppi2_scaled"
, "mcsm_na_scaled" )
outcome_cols_affinity = c( "ligand_outcome"
, "mmcsm_lig_outcome"
, "mcsm_ppi2_outcome"
, "mcsm_na_outcome")
#===================
# conservation cols
#===================
# raw_cols_conservation = c("consurf_score"
# , "snap2_score"
# , "provean_score")
#
# scaled_cols_conservation = c("consurf_scaled"
# , "snap2_scaled"
# , "provean_scaled")
#
# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether
# outcome_cols_conservation = c("provean_outcome"
# , "snap2_outcome"
# #consurf outcome doesn't exist
# )
######################################################################
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
, raw_cols
, scaled_cols
, outcome_cols_aff)]
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
, outcome_cols_aff)]
, outcome_cols_affinity)]
# cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
# , outcome_cols_affinity)]
##############################################################
#####################
# Ensemble affinity
# Ensemble affinity: affinity_cols
#####################
# extract outcome cols and map numeric values to the categories
# Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising
df3_plot = df3[, cols_to_extract]
df3_plot[, outcome_cols_aff] <- sapply(df3_plot[, outcome_cols_aff]
, function(x){ifelse(x == "Destabilising", 0, 1)})
#=====================================
# Stability (4 cols): average the scores
# across predictors ==> average by
# position ==> scale b/w -1 and 1
# column to average: ens_stability
#=====================================
cols_to_average = which(colnames(df3_plot)%in%outcome_cols_aff)
# ensemble average across predictors
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])
head(df3_plot$position); head(df3_plot$mutationinformation)
head(df3_plot$ens_stability)
table(df3_plot$ens_stability)
# ensemble average of predictors by position
mean_ens_stability_by_position <- df3_plot %>%
dplyr::group_by(position) %>%
dplyr::summarize(avg_ens_stability = mean(ens_stability))
# REscale b/w -1 and 1
#en_stab_min = min(mean_ens_stability_by_position['avg_ens_stability'])
#en_stab_max = max(mean_ens_stability_by_position['avg_ens_stability'])
# scale the average stability value between -1 and 1
# mean_ens_by_position['averaged_stability3_scaled'] = lapply(mean_ens_by_position['averaged_stability3']
# , function(x) ifelse(x < 0, x/abs(en3_min), x/en3_max))
mean_ens_stability_by_position['avg_ens_stability_scaled'] = lapply(mean_ens_stability_by_position['avg_ens_stability']
, function(x) {
scales::rescale(x, to = c(-1,1)
#, from = c(en_stab_min,en_stab_max))
, from = c(0,1))
})
cat(paste0('Average stability scores:\n'
, head(mean_ens_stability_by_position['avg_ens_stability'])
, '\n---------------------------------------------------------------'
, '\nAverage stability scaled scores:\n'
, head(mean_ens_stability_by_position['avg_ens_stability_scaled'])))
# convert to a data frame
mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position)
#FIXME: sanity checks
# TODO: predetermine the bounds
# l_bound_ens = min(mean_ens_stability_by_position['avg_ens_stability_scaled'])
# u_bound_ens = max(mean_ens_stability_by_position['avg_ens_stability_scaled'])
# df3_plot = df3[, cols_to_extract]
#
# if ( (l_bound_ens == -1) && (u_bound_ens == 1) ){
# cat(paste0("PASS: ensemble stability scores averaged by position and then scaled"
# , "\nmin ensemble averaged stability: ", l_bound_ens
# , "\nmax ensemble averaged stability: ", u_bound_ens))
# }else{
# cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
# , "\nmin ensemble averaged stability: ", l_bound_ens
# , "\nmax ensemble averaged stability: ", u_bound_ens))
# quit()
# }
##################################################################
#%%
affinity_outcome_colnames = c("ligand_outcome", "mmcsm_lig_outcome"
, "mcsm_ppi2_outcome"
, "mcsm_na_outcome")
outcome_cols_affinity = colnames(df3)[colnames(df3)%in%affinity_outcome_colnames]
outcome_cols_affinity = c("ligand_outcome"
,"mmcsm_lig_outcome")
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols, outcome_cols_aff, outcome_cols_affinity)]
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols_aff)]
foo = df3[, cols_to_consider]
df3_plot_orig = df3[, cols_to_extract]
############################
# Ensemble affinity: ligand
############################
# extract ligand affinity outcome cols and map numeric values to the categories
# Destabilising == 1, and stabilising == 0
cols_to_extract_affinity = cols_to_consider[cols_to_consider%in%c(common_cols
, outcome_cols_affinity)]
df3_plot_affinity = df3[, cols_to_extract_affinity]
names(df3_plot_affinity)
df3_plot_affinity[, outcome_cols_affinity] <- sapply(df3_plot_affinity[, outcome_cols_affinity]
, function(x){ifelse(x == "Destabilising", 1, 0)})
# df3_plot[, outcome_cols_affinity] <- sapply(df3_plot[, outcome_cols_affinity]
# , function(x){ifelse(x == "Destabilising", 0, 1)})
df3_plot = df3[, c(common_cols, scaled_cols)]
#=====================================
# Affintiy (2 cols): average the scores
# across predictors ==> average by
@ -206,7 +148,7 @@ df3_plot_affinity[, outcome_cols_affinity] <- sapply(df3_plot_affinity[, outcome
# column to average: ens_affinity
#=====================================
cols_to_average_affinity = which(colnames(df3_plot_affinity)%in%outcome_cols_affinity)
cols_to_average_affinity = which(colnames(df3_plot)%in%outcome_cols_affinity)
cols_to_average_affinity
# ensemble average across predictors

View file

@ -53,54 +53,85 @@ all_colnames = as.data.frame(colnames(df3))
common_cols = c("mutationinformation"
, "position"
, "dst_mode"
#, "mutation_info_labels"
, "mutation_info_labels"
, "sensitivity"
, "ligand_distance")
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
scaled_cols = c("duet_scaled" , "duet_stability_change"
, "deepddg_scaled" , "deepddg"
, "ddg_dynamut2_scaled" , "ddg_dynamut2"
, "foldx_scaled" , "ddg_foldx"
, "affinity_scaled" , "ligand_affinity_change"
, "mmcsm_lig_scaled" , "mmcsm_lig"
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
, "mcsm_na_scaled" , "mcsm_na_affinity"
#, "consurf_scaled" , "consurf_score"
#, "snap2_scaled" , "snap2_score"
#, "provean_scaled" , "provean_score"
)
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
outcome_cols_aff = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome"
#, "ddg_foldx", "foldx_scaled"
, "ligand_outcome"
, "mmcsm_lig_outcome"
, "mcsm_ppi2_outcome"
, "mcsm_na_outcome"
# consurf outcome doesn't exist
#,"provean_outcome"
#,"snap2_outcome"
)
#===================
# stability cols
#===================
raw_cols_stability = c("duet_stability_change"
, "deepddg"
, "ddg_dynamut2"
, "ddg_foldx")
scaled_cols_stability = c("duet_scaled"
, "deepddg_scaled"
, "ddg_dynamut2_scaled"
, "foldx_scaled")
outcome_cols_stability = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome")
#===================
# affinity cols
#===================
raw_cols_affinity = c("ligand_affinity_change"
, "mmcsm_lig"
, "mcsm_ppi2_affinity"
, "mcsm_na_affinity")
scaled_cols_affinity = c("affinity_scaled"
, "mmcsm_lig_scaled"
, "mcsm_ppi2_scaled"
, "mcsm_na_scaled" )
outcome_cols_affinity = c( "ligand_outcome"
, "mmcsm_lig_outcome"
, "mcsm_ppi2_outcome"
, "mcsm_na_outcome")
#===================
# conservation cols
#===================
# raw_cols_conservation = c("consurf_score"
# , "snap2_score"
# , "provean_score")
#
# scaled_cols_conservation = c("consurf_scaled"
# , "snap2_scaled"
# , "provean_scaled")
#
# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether
# outcome_cols_conservation = c("provean_outcome"
# , "snap2_outcome"
# #consurf outcome doesn't exist
# )
###########################################################
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
, scaled_cols
, outcome_cols)]
, raw_cols_stability
, scaled_cols_stability
, outcome_cols_stability)]
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
, outcome_cols)]
, outcome_cols_stability)]
##############################################################
#####################
# Ensemble stability
# Ensemble stability: outcome_cols_stability
#####################
# extract outcome cols and map numeric values to the categories
# Destabilising == 0, and stabilising == 1, so rescaling can let -1 be destabilising
df3_plot = df3[, cols_to_extract]
# assign numeric values to outcome
df3_plot[, outcome_cols] <- sapply(df3_plot[, outcome_cols]
df3_plot[, outcome_cols_stability] <- sapply(df3_plot[, outcome_cols_stability]
, function(x){ifelse(x == "Destabilising", 0, 1)})
table(df3$duet_outcome)
table(df3_plot$duet_outcome)
@ -111,7 +142,7 @@ table(df3_plot$duet_outcome)
# column to average: ens_stability
#=====================================
cols_to_average = which(colnames(df3_plot)%in%outcome_cols)
cols_to_average = which(colnames(df3_plot)%in%outcome_cols_stability)
# ensemble average across predictors
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])